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Abstract

In this paper we analyze a queueing system with a general service scheduling function. There are two types of customer
with different service requirements. The service order for customers of each type is determined by the service scheduling
function ak(i, j) where ak(i, j) is the probability for type-k customer to be selected when there are i type-1 and j type-2 cus-
tomers. This model is motivated by traffic control to support traffic streams with different traffic characteristics in telecom-
munication networks (in particular, ATM networks). By using the embedded Markov chain and supplementary variable
methods, we obtain the queue-length distribution as well as the loss probability and the mean waiting time for each type of
customer. We also apply our model to traffic control to support diverse traffics in telecommunication networks. Finally,
the performance measures of the existing diverse scheduling policies are compared. We expect to help the system designers
select appropriate scheduling policy for their systems.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Various queueing systems have been studied for traffic control to support traffic streams with different traf-
fic characteristics in telecommunication networks, in particular Asynchronous Transfer Mode (ATM)
networks [2,4,5,7,9]. The traffic streams in networks such as voice, data and video have different traffic char-
acteristics. In other words, the voice traffic is delay-sensitive (or real-time) while the data traffic is loss-sensitive
(or nonreal-time). Thus, in order to satisfy the quality of service (QoS) of each traffic, a service scheduling
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policy is necessary. The diverse scheduling methods have been proposed to satisfy the QoS of traffic. The exist-
ing representative scheduling methods are the time priority control (for example, the head of the line (HOL)
priority scheduling policy) [7] and the loss priority control (for example, partial buffer sharing) [9]. These
scheduling methods have focused on satisfying a specific QoS requirement of traffic. For example, the
HOL priority scheduling policy is just for the delay-sensitive traffic such as voice. Recently, to satisfy simul-
taneously QoS of two traffics with different traffic characteristics, a dynamic priority queue has been studied in
[2,4,5].

In this paper, we consider a queueing system with a general service scheduling function, which is described
as follows: The customers are classified into two types (type-1 and type-2) with different service requirements.
There are two buffers I and II to accommodate customers of the type-1 and the type-2 customers respectively.
The capacities of buffers I and II are assumed to be finite with size K1 and K2 respectively. Arrival of the
type-k customers follows a Poisson process with rate kk (k = 1,2). The service order for customers of each
type is determined by the service scheduling function ak(i, j) (k = 1,2) where ak(i, j) is the probability that
the type-k customer is selected for service when there are i type-1 customers and j type-2 customers. Clearly,
a1(i, 0) = 1, i > 0, a2(0, j) = 1, j > 0 and a1(i, j) + a2 (i, j) = 1 for all i and j. Regardless of the type of customers,
the service time is independent and identically distributed with distribution function G(Æ), mean l and
Laplace transform G*(s). Even though the service time in applications of ATM networks (the transmission
time of a cell (the fixed size of a small packet)) is deterministic, we will consider the service time with a gen-
eral distribution. The service of customers in each buffer is based on the first-come first-served (FCFS)
discipline.

Our queueing model extends the existing scheduling policies and includes these policies as special cases. The
important performance measures to satisfy the QoS of each traffic are loss and delay. Thus, we present the loss
probability and the mean waiting time by deriving the queue-length distribution. With an application for traf-
fic control to support diverse traffic streams in telecommunication networks, the performance measures of the
existing scheduling policies are compared.

We analyze the given queueing system in Section 2. First, we derive the balance equations for the joint
queue-length distribution at customer departure epochs by using the embedded Markov chain method. With
this information, we express the queue-length distribution at arbitrary times in terms of the distribution
at departure epochs, though the latter must be found numerically by solving a finite linear system. Finally
we obtain the loss probability and the mean waiting time for each type of customer. In Section 3, some
numerical examples are given to compare performance measures such as loss and delay of diverse scheduling
policies.

2. Analysis

For analysis of the queueing system, we first use the embedded Markov chain method. The customer’s
departure epochs are considered as the embedded epochs. To obtain the queue-length distribution at depar-
ture epochs, we must know the number of customers arriving during a service time. Thus, let us introduce
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With above notations, we concretely derive the balance equations for the joint queue-length distribution at
departure epochs.

2.1. The queue-length distribution at departure epochs

In order to derive the joint queue-length distribution just after departure epochs, let tn (n P 1) be the nth
departure epoch of a customer with t0 = 0. We also introduce the notations:

464 D.I. Choi et al. / European Journal of Operational Research 178 (2007) 463–471



Download English Version:

https://daneshyari.com/en/article/479173

Download Persian Version:

https://daneshyari.com/article/479173

Daneshyari.com

https://daneshyari.com/en/article/479173
https://daneshyari.com/article/479173
https://daneshyari.com

