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a b s t r a c t 

We consider a discrete population of users with homogeneous service demand who need to decide when 

to arrive to a system in which the service rate deteriorates linearly with the number of users in the 

system. The users have heterogeneous desired departure times from the system, and their goal is to 

minimise a weighted sum of the travel time and square deviation from the desired departure times. 

Users join the system sequentially, according to the order of their desired departure times. We model this 

scenario as a non-cooperative game in which each user selects his actual arrival time. We present explicit 

equilibria solutions for a two-user example, namely the Subgame Perfect and Cournot Nash equilibria 

and show that multiple equilibria may exist. We further explain why a general solution for any number 

of users is computationally challenging. The difficulty lies in the fact that the objective functions are 

piecewise-convex, i.e., non-smooth and non-convex. As a result, the minimisation of the costs relies on 

checking all arrival and departure order permutations, which is exponentially large with respect to the 

population size. Instead we propose an iterated best-response algorithm which can be efficiently studied 

numerically. Finally, we compare the equilibrium arrival profiles to a socially optimal solution and discuss 

the implications. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The strategic timing of arrivals to congested systems is relevant 

for various applications such as traffic, queueing and communica- 

tion networks. We study a non-cooperative game in which atomic 

users need to time their arrival to a deterministic processor shar- 

ing system with linear slowdown. This may be the case on a ring 

road around a business district in which the density at any point 

on the road affects all of the road, and therefore arriving users 

can cause a slowdown even for users who arrived before them. 

Throughout the paper we refer to the model as a traffic network 

where users travel along a route at varying speeds. Nevertheless, 

our aim here is to provide a general analysis of the strategic ar- 

rival times to such a processor sharing system, and the results are 

not limited to the specific traffic application. The linear slowdown 

dynamic can be seen as a discrete variation of Greenshield’s fluid 

model (see for example Mahmassani & Herman, 1984 ). This work 

complements ( Ravner & Nazarathy, 2015 ) where the socially opti- 

mal arrival schedule of users to the same system was analysed. In 

∗ Corresponding author. Tel.: +972 2 5883790. 

E-mail address: liron.ravner@mail.huji.ac.il (L. Ravner). 

this paper the choice of arrival times is made by the users them- 

selves sequentially, according to the their desired departure times. 

Note that while all users are served simultaneously, the model pre- 

sented here still maintains the First-In-First-Out property, and thus 

in the sequential game users leave the system in the same order 

they arrived. 

The study of departure time choice to a congested bottleneck 

goes back to Vickrey (1969) , where a fluid queue dynamic was as- 

sumed. The research of fluid bottleneck models has evolved greatly 

since then, and we refer the reader to Arnott, de Palma, and Lind- 

sey (1993) and de Dios Ortúzar and Willumsen (2011) and refer- 

ences therein. Otsubo and Rapoport analysed a non-fluid (atomic 

user) game with discrete arrival instances in Otsubo and Rapoport 

(2008) . An arrival time and route choice (dynamic user equilib- 

rium) game for a route with linear slowdown was analysed using a 

mean field approach by Mahmassani and Herman in Mahmassani 

and Herman (1984) . 

A queueing theory approach to the strategic timing of arrivals 

to a congested stochastic queue was developed by Glazer and Has- 

sin (1983) . They introduced a game in which a discrete popula- 

tion of users, of a Poisson distributed size, choose arrival times 

to a single server exponential queue with the goal of minimising 

waiting times. This led to another branch of research that relies on 
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Fig. 1. The individual travel speed and aggregate throughput as the number of 

users in the system increases. Parameter values: β = 1 and α = 0 . 01 . 

the stochastic properties of the queues, rather than fluid dynamics. 

Examples with a discrete deterministic population, as we assume 

in this work, are the works of Juneja and Shimkin (2013) (tard- 

niess costs), Ravner (2014) (order penalties), and Haviv and Ravner 

(2015) (loss system). All of the above assume random memoryless 

service times and a first come first served regime. An arrival time 

game to a processor sharing queue was studied by Juneja and Ra- 

heja (2015) , using a fluid approximation. In the queueing context 

our work is the first to analyse an arrival time game with a dis- 

crete population queue with heterogeneous users and determinis- 

tic service times. 

2. Traffic model 

In this section we introduce the model and show that despite 

its seeming simplicity, it in fact yields a complex arrival-departure 

dynamic. Suppose a set of atomic users N := { 1 , . . . , N} need to 

travel on a single route of length 1. We define the travel speed 

on a segment at time t as: 

v (t) := β − α(q (t) − 1) , (1) 

where q ( t ) is the number of users on the segment at time t , β > 0 

is the free flow speed of a single user travelling alone, and α ≥ 0 

is the slowdown parameter. We assume that β − α(N − 1) > 0 , in 

other words, this means that the travel speed is positive even if all 

users travel at the same time. Note that for α ≥ β
2 , the only possi- 

ble case is N = 2 . In Fig. 1 the system dynamics are illustrated as 

a function of the number of concurrent users. Observe that while 

travel speed decreases by definition, the overall service rate is non- 

monotone and concave. In particular, it is initially increasing, has a 

maximal throughput at level q = 

β+ α
2 α and then decreases to almost 

zero when the system is very busy. 

Every user i ∈ N has a desired departure time from the sys- 

tem, denoted by d ∗
i 
. Without loss of generality we assume that 

the desired departure times are ordered: d ∗
i 

≤ d ∗
j 
, ∀ i < j. The ac- 

tion of user i is choosing an arrival time a i ∈ R . Denote the ar- 

rival and departure vectors of all users by a := (a 1 , . . . , a N ) and 

d := (d 1 , . . . , d N ) , respectively. The cost incurred by user i is 

c i (a ) = (d i − d ∗i ) 
2 + γ (d i − a i ) . (2) 

This cost function is a combination of a quadratic penalty for any 

deviation from the desired departure time, be it early or late, and 

a linear penalty for the total travel time. We focus on this cost 

function for the sake of a clear presentation, but all of our analysis 

can be applied to any convex function (of the deviation and travel 

time terms) in a straightforward manner. We further discuss on 

how this generalisation can be made in the concluding remarks in 

Section 7 . The minimal cost of any user is 
γ
β

, and can only be ob- 

tained by travelling alone at free flow speed and leaving at exactly 

the desired time, d ∗
i 

for user i . 

The effective departure times of users are determined by a and 

the travel dynamics defined in (1) : 

1 = 

∫ d i 

a i 

v ( t ) dt, i ∈ N , (3) 

where q (t) = 

∑ 

i ∈N 1 { t∈ [ a i ,d i ] } . Using (1) we get a set of N equations 

for d , 

1 = (d i − a i )(β + α) − α

∫ d i 

a i 

∑ 

j∈N 
1 { t ∈ [ a j , d j ] } dt, i ∈ N . 

These N equations can be treated as equations for the unknowns d , 

given a or vice-versa. In Ravner and Nazarathy (2015) it was shown 

that the departure dynamics for an ordered vector a are given by 

D d − A a = 1 , 

where A ∈ R 

N and D ∈ R 

N are defined as follows: 

A i j := 

{ 

β − α(i − h i ) , i = j 
−α, i + 1 ≤ j ≤ k i 
0 , o.w. 

, and 

D i j := 

{ 

β − α(k i − i ) , i = j 
−α, h i ≤ j ≤ i − 1 

0 , o.w. 

, 

with k i := max { k ∈ N : a k ≤ d i } and h i := min { h ∈ N : d h ≥ a i } . A di- 

rect result of this is the recursive formula 

d i = 

1 + ( β − α(i − h i ) ) a i + α( 
∑ i −1 

j= h i d j −
∑ k i 

j= i +1 
a j ) 

β − α(k i − i ) 
, i ∈ N . (4) 

Using an iterative algorithm we can compute the unique d for any 

given a (or vice versa) with at most 2 N computations. At this point 

it is important to observe that the vector k := (k 1 , . . . , k N ) defines 

the combined order permutation of all arrivals and departures. For 

example, if N = 3 , the profile ( a 1 < a 2 < d 1 < a 3 < d 2 < d 3 ) 

corresponds to k := (2, 3, 3). In this example there is an over- 

lay between users 1 and 2 during the interval [ a 2 , d 1 ], and be- 

tween users 2 and 3 during the interval [ a 3 , d 2 ]. Therefore, given k 

we know the exact number of users and their travel speed at any 

point in time. Furthermore, as long as there is no change in the 

permutation, the departure times are continuous with the arrival 

times with a known linear coefficient, as shown in Fig. 2 . Note that 

(4) simply solves the traffic dynamics without any consideration of 

the cost function (2) that users wish to minimise. 

If we denote the set of all possible arrival-departure permuta- 

tions by 

K := { k ∈ N 

N : k N = N, k i ≤ k j ∀ i ≤ j} , 
then |K| = 

( 2 N N ) 
N+1 . This follows by observing that the elements of 

K correspond uniquely to lattice paths in the N × N grid from 

bottom-left to top-right with up and right movements without 

crossing the diagonal. The number of such elements is the Cata- 

lan number (see Ravner and Nazarathy, 2015 for more details). 

The relation between arrival and departure times, defined in 

(3) , is in fact a set of piecewise-linear equations. This is illustrated 

in Fig. 2 by changing the arrival time of a single user while keeping 

all others fixed. 

The piecewise linear relation between arrival and departure 

times implies that the cost of any single user is not convex with 

respect to his own arrival time, even though the cost function, de- 

fined in (2) , has a convex form. This piecewise-convex behaviour 

is illustrated for the same numerical example in Fig. 3 . We can see 
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