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a b s t r a c t 

This paper presents an exact algorithm, a constructive heuristic algorithm, and a metaheuristic for the 

Hamiltonian p-Median Problem (HpMP). The exact algorithm is a branch-and-cut algorithm based on an 

enhanced p -median based formulation, which is proved to dominate an existing p -median based formu- 

lation. The constructive heuristic is a giant tour heuristic, based on a dynamic programming formulation 

to optimally split a given sequence of vertices into cycles. The metaheuristic is an iterated local search 

algorithm using 2-exchange and 1-opt operators. Computational results show that the branch-and-cut 

algorithm outperforms the existing exact solution methods. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

This paper studies the Hamiltonian p-Median Problem (HpMP), 

defined on a complete undirected graph G = (V, E) , where V is the 

vertex set, and E = { (i, j) : i, j ∈ V, i < j} is the edge set. There is a 

cost c ij associated with every edge ( i , j ). The aim is to partition the 

graph into p subsets of vertices, each connected by a single cycle. 

The objective is to minimize the total cost of edges belonging to 

the cycles. Following the convention of Gollowitzer, Gouveia, La- 

porte, Pereira, and Wojciechowski (2014) , we only consider subsets 

(cycles) of cardinality 3 or more. The Traveling Salesman Problem 

(TSP) is a special case of the HpMP with p = 1 , and consequently 

the HpMP is NP-hard. It is worth mentioning that the 2-matching 

problem, which returns an arbitrary number of cycles is solvable 

in polynomial time (see, for example Miller & Pekny, 1995 ). 

Laporte, Nobert, and Pelletier (1983) introduced a series of 

location-routing problems and provided computational results for 

exact algorithms using cutting planes. One of these problems 

was to locate no more than p non-intersecting cycles in a graph 

with minimum cost, which was the precursor of the HpMP. The 

HpMP was introduced by Branco and Coelho (1990) . It has re- 

ceived relatively little attention from researchers, and the exist- 

ing studies have mostly focused on exact algorithms. Motivated by 

an application in laser multi-scanners, ( Glaab & Pott, 20 0 0 ) have 

studied the HpMP and presented a three-index formulation, to- 
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gether with results on the dimension of the associated polytope. 

Zohrehbandian (2007) has proposed a formulation for the HpMP 

based on a three-index Vehicle Routing Problem formulation, but 

did not provide any computational results. Gollowitzer, Pereira, and 

Wojciechowski (2011) have provided three formulations for the 

HpMP together with valid inequalities and branch-and-cut algo- 

rithms. In a later study, ( Gollowitzer et al., 2014 ) have introduced 

seven different formulations for the HpMP which they have com- 

pared in terms of dominance relationships. They have also pre- 

sented computational results for up to | V | = 100 . Hupp and Liers 

(2013) have conducted a polyhedral analysis of an HpMP formu- 

lation using only edge variables and proved that a subset of the 

well-known 2-matching inequalities from the TSP define facets of 

the HpMP polytope. 

There exist very few studies on heuristics for the HpMP and 

its variants. Glaab (2002) provided fast heuristics and improved 

lower bounds for a variant of the HpMP that arises in cutting prob- 

lems. Uster and Kumar (2010) have studied the Balanced Ring Prob- 

lem , which is another variant of the HpMP requiring the number 

of vertices on each cycle to be almost equal. They have provided 

a GRASP-based constructive algorithm as well as a local search 

heuristic. To the best of our knowledge, no metaheuristics have yet 

been proposed for the HpMP. 

The remainder of this paper is organized as follows. In 

Section 2 , we recall a integer linear programming formulation for 

the HpMP proposed by Gollowitzer et al. (2014) ; we also intro- 

duce an alternative formulation with several reinforcements and 

we develop a branch-and-cut algorithm based on this formula- 

tion. In Section 3.1 , we provide a giant tour heuristic based on a 

Dynamic Programming formulation. In Section 3.2 , we provide an 
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Iterated Local Search (ILS) algorithm for the HpMP. In Section 4 , 

we present the computational results for our algorithms on bench- 

mark instances. Conclusions follow in Section 5 . 

2. Enhanced p -median based formulation 

Gollowitzer et al. (2014) have proposed a p -median based for- 

mulation, which they call Model 3. It uses variables for assign- 

ing vertices to other vertices. For the sake of completeness, we 

present their formulation below, which we call HpMP1. The au- 

thors denote the ordered vertex pairs of every edge ( i , j ) ∈ E as 

γ (i, j) = { (i, j) , ( j, i ) } , and the edges between a subset of vertices 

W ⊂ V and the remaining vertices as δ( W ). Let x ij be equal to 1 if 

edge ( i , j ) belongs to the solution, and 0 otherwise. Let y i be equal 

to 1 if it is selected as a depot, and 0 otherwise. Finally, let v i j be 

equal to 1 if vertex i is assigned to depot j , and 0 otherwise. The 

formulation is then: 

(HpMP1) 

minimize 
∑ 

(i, j) ∈ E 
c i j x i j (obj) 

subject to ∑ 

i ∈ V 
y i = p (pm1) 

∑ 

j∈ V \{ i } v i j + y i = 1 i ∈ V (pm2) 

v i j ≤ y j i, j ∈ V : i � = j (pm3) 

∑ 

j∈ δ(i ) x i j = 2 i ∈ V (deg) 

∑ 

(i, j) ∈ δ(W ) x i j ≥ 2 

∑ 

l∈ V \ W 

v kl W ⊂ V, k ∈ W ( pm ≤) 

v ka + x i j ≤ 1 + v la (i, j) ∈ E, (k, l) ∈ γ (i, j) , a ∈ V \ { k, l} 
( pm ≥) 

y k + x i j ≤ 1 + v lk (i, j) ∈ E, (k, l) ∈ γ (i, j) ( pm ≥ ′ ) 
v i j = 0 i, j ∈ V : i > j (sb) 

x i j ∈ { 0 , 1 } (i, j) ∈ E (bin) 

v i j ∈ { 0 , 1 } i, j ∈ V : i � = j (pm4) 

y i ∈ { 0 , 1 } i ∈ V. (pm5) 

The objective function (obj) minimizes the total cost of cycles. 

Constraint set (pm1) sets the number of cycles to p . Constraint sets 

(pm2) and (sb) require every vertex to be assigned to itself or to a 

vertex having a higher index. Constraint set (pm3) forces a vertex 

to be chosen as a depot if another vertex is assigned to it. Con- 

straint set (deg) states that every vertex must have a degree of 2 

which, in conjunction with (bin) , enforces the minimum cycle size 

to be 3. Constraints ( pm ≤) connect the vertices assigned to the 

same cycle by forcing two edges between the two complementary 

subsets if a vertex in one subset is assigned to a vertex in the other 

subset. Constraints ( pm ≥ ) and ( pm ≥ ′ ) eliminate connections 

between vertices that have been assigned to different depots. Con- 

straints (sb) cut off symmetrical solutions by forcing all vertices 

in a cycle to be assigned to the vertex with the highest index. Fi- 

nally, (bin), (pm4) , and (pm5) are the integrality constraints on the 

variables. 

2.1. Valid inequalities 

To facilitate our analysis, we propose an alternative formulation, 

called HpMP2, for the HpMP. It is obtained by unifying the vari- 

ables v i j and y j into the variable w i j , i.e. w i j is a binary variable 

equal to 1 if and only if vertex i is assigned to vertex j , with w ii = 1 

meaning that vertex i has been chosen as a depot. This transforma- 

tion results in a simpler presentation of ( pm ≥) and ( pm ≥ ′ ), and 

the new sets of inequalities we subsequently propose. For the sake 

of clarity, we present the resulting formulation in its entirety, in- 

cluding constraints that are not affected by the change of variables: 

(HpMP2) 

minimize 
∑ 

(i, j) ∈ E c i j x i j (1) 

subject to ∑ 

i ∈ V 
w ii = p (2) 

∑ 

j∈ V w i j = 1 i ∈ V (3) 

w i j ≤ w j j i, j ∈ V (4) 

∑ 

j∈ δ(i ) x i j = 2 i ∈ V (5) 

∑ 

(i, j) ∈ δ(W ) x i j ≥ 2 

∑ 

l∈ V \ W 

w kl W ⊂ V, k ∈ W (6) 

w ka + x i j ≤ 1 + w la (i, j) ∈ E, (k, l) ∈ γ (i, j) a ∈ V (7) 

w i j = 0 i, j ∈ V : i > j (8) 

x i j ∈ { 0 , 1 } (i, j) ∈ E (9) 

w i j ∈ { 0 , 1 } i, j ∈ V. (10) 

Note that the transformation unifies constraints ( pm ≥) and 

( pm ≥ ′ ) into (7) . We now state our first result. 

Proposition 1. The following inequalities are valid for HpMP2, and 

dominate (7) : 
∑ 

k ∈ S 
w ik + x i j ≤ 1 + 

∑ 

k ∈ S 
w jk (i, j) ∈ E, S ⊂ V. (11) 

Proof. Since 
∑ 

k ∈ S w ik ≤ 1 and x ij ≤ 1, this inequality is valid when- 

ever 
∑ 

k ∈ S w ik = 0 or x i j = 0 . Thus, we only have to analyze the case 

where 
∑ 

k ∈ S w ik = 1 and x i j = 1 . In this case, x i j = 1 implies that 

i and j are assigned to the same depot and hence 
∑ 

k ∈ S w jk = 1 . 

Therefore, the inequality (11) is valid. Note that (7) is a special 

case of (11) if | S| = 1 or | S| = | V | − 1 , and is therefore dominated 

by (11) . �

Although the number of constraints (11) is exponential, these 

can be separated in polynomial time. For any given edge ( i , j ) ∈ E , 

start with S = ∅ and include a vertex k ∈ V into S if and only if 

w ik > w jk . This results in an overall complexity of O (| V | 3 ). 

We now focus on (6) . Define F(W ) as the set of all sets of pairs 

( i , j ): i ∈ W , j ∈ V �W or i ∈ V �W , j ∈ W such that for every element 

of F(W ) there is at most one pair containing any vertex k ∈ V as 

its second component. We now state our second result. 

Proposition 2. The following inequalities are valid for HpMP2, and 

dominate (6) : 
∑ 

(i, j) ∈ δ(W ) 

x i j ≥ 2 

∑ 

(k,l) ∈ F 
w kl W ⊂ V, F ∈ F(W ) . (12) 

Proof. Consider a partition of { W , V �W } of V , as depicted in Fig. 1 , 

where the positive x variables are denoted with thin lines, the pos- 

itive w variables are denoted with arrows, and the partition is de- 

noted by a dashed line. In order to check that constraints (12) are 

valid, we will prove that a feasible solution of HpMP2, ( ̄x , w̄ ) , sat- 

isfies them. Let F ∈ F(W ) . If for a pair ( k , l ) ∈ F we have that 

w̄ kl = 1 , then either vertex k ∈ W is assigned to depot l ∈ V �W 
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