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a b s t r a c t 

We introduce a parallel machine scheduling problem in which the processing times of jobs are not 

given in advance but are determined by a system of linear constraints. The objective is to minimize 

the makespan, i.e., the maximum job completion time among all feasible choices. This novel problem 

is motivated by various real-world application scenarios. We discuss the computational complexity and 

algorithms for various settings of this problem. In particular, we show that if there is only one machine 

with an arbitrary number of linear constraints, or there is an arbitrary number of machines with no more 

than two linear constraints, or both the number of machines and the number of linear constraints are 

fixed constants, then the problem is polynomial-time solvable via solving a series of linear programming 

problems. If both the number of machines and the number of constraints are inputs of the problem in- 

stance, then the problem is NP-Hard. We further propose several approximation algorithms for the latter 

case. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

A scheduling problem aims to allocate resources to jobs, so as 

to meet a specific objective, e.g., to minimize the makespan or the 

total completion time. One common assumption in the classical 

scheduling problem is that the processing times of jobs are deter- 

ministic and are given in advance. However, in practice, the pro- 

cessing times are usually uncertain/unknown or could be part of 

the decisions. A number of works in the literature have proposed 

various scheduling models in which the processing times are un- 

certain/unknown, such as the stochastic scheduling problem ( Dean, 

2005; Möhring, Radermacher, & Weiss, 1984; Möhring, Schulz, & 

Uetz, 1999 ) and the robust scheduling problem ( Daniels & Kou- 

velis, 1995; Kasperski, 2005; Kasperski & Zielinski, 2008 ). In the 

stochastic scheduling problem, it is assumed that the processing 

times are random variables and the expected makespan is con- 

sidered. In the robust scheduling problem, it is assumed that the 

processing time of each job belongs to a certain set and the objec- 

tive is to find a robust schedule under some performance criterion 

(e.g., minimize the maximum absolute deviation of total comple- 

tion time, or the total lateness). Note that in either the stochastic 

or the robust scheduling problems, the processing times are still 

exogenously given. 
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In the presented paper, we introduce a new scheduling model. 

In our model, the processing times of jobs are not exogenously 

given, instead they can be chosen as part of the decisions, but they 

must satisfy a set of linear constraints. We call this problem the 

“scheduling under linear constraints” (SLC) problem. Note that the 

SLC problem reduces to the classical parallel machine scheduling 

problem P || C max when the processing times of jobs are given (or 

equivalently, when the linear constraints have a unique solution). 

This problem is related to the scheduling problem with control- 

lable processing times studied in the literature ( Nowicki & Zdrza- 

lka, 1988, 1990; Shabtay & Steiner, 2007 ). In the latter problem, 

the processing times of jobs are controlled by factors such as the 

starting times and the sequence of the jobs, while in our problem, 

the processing times are part of the decision variables. 

The SLC problem is also related to the lot sizing and schedul- 

ing problem in production planning, which decides the type and 

amount of jobs to process at each time period over a time horizon 

( Drexl & Haase, 1995; Drexl & Kimms, 1997; Haase, 1994 ). How- 

ever, although these two problems may share some similar back- 

grounds, they are different in many ways: (1) In the SLC prob- 

lem, each task must be completed in a consecutive time interval 

and can only be chosen once, while in the lot sizing and schedul- 

ing problem, an activity (e.g., the production of certain type of 

products) can be scheduled in multiple non-consecutive periods; 

(2) The objective of the lot sizing and scheduling problem is to 

minimize the total costs, including the setup costs, the inven- 

tory holding costs, etc, which is significantly different from the 

http://dx.doi.org/10.1016/j.ejor.2016.02.028 

0377-2217/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.ejor.2016.02.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2016.02.028&domain=pdf
mailto:njm13@mails.tsinghua.edu.cn
mailto:zwang@math.tsinghua.edu.cn
mailto:zwang@umn.edu
http://dx.doi.org/10.1016/j.ejor.2016.02.028


K. Nip et al. / European Journal of Operational Research 253 (2016) 290–297 291 

Table 1 

Example for the industrial production problem. 

Composition Alloy Demand 

1 2 3 ��� n 

Iron 24 8 3 ��� 2 ≥ 56 

Copper 3 3 3 ��� 1 ≥ 30 
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. 
. 
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. 
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. 
. 
. 

. 

. 

. 

Aluminium 4 33 137 ��� 100 ≥ 10 0 0 

Max. of alloy Quantity 

1 1 0 0 ��� 0 ≤ 10 

2 0 1 0 ��� 0 ≤ 7 

3 0 0 1 ��� 0 ≤ 20 

. 

. 
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. 
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. 

. 
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. 

. 

. 

. 

. 

. 

. 

. 
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. 

n 0 0 0 ��� 1 ≤ 15 

objective of the SLC problem ( Kreipl & Pinedo, 2004 ), which is to 

minimize the makespan of the schedule; (3) Due to the difference 

in the objective, the key tradeoff in these two problems are differ- 

ent. In the SLC problem, the main consideration is how to balance 

the workload of each machine, and assign the jobs evenly across 

machines. In contrast, the key consideration in the lot sizing and 

scheduling problem is how to divide the jobs and schedule them 

(e.g., how many units of products to produce in each use of the 

machine), which is more similar to that in an EOQ model (see 

Snyder & Shen, 2011 ); (4) As we will see later, the mathematical 

programming formulation for the SLC problem is a mixed integer 

quadratic program, while the common formulation for the lot siz- 

ing and scheduling problem is a mixed integer program (e.g., see 

Drexl and Haase, 1995 , page 75). Therefore, the methodologies and 

research approaches are also different. 

In the following, we provide a few examples that motivate the 

study of the SLC problem. 

1. Industrial production problem. Perhaps the earliest motivation 

for the scheduling problem came from manufacturing (e.g., see 

Pinedo, 2009, 2012 ). Suppose a manufacturer requires certain 

amounts of different raw metals, and he needs to extract them 

from several alloys. There are several machines that can extract 

the alloys in parallel. We focus on the procedure of extracting 

the alloys, of which the goal is to finish as early as possible. 

In this problem, the processing times of extracting each alloy 

depend on the processing quantities, and traditionally, they are 

predetermined in advance. However, in practice, those quanti- 

ties are determined by the demands of the raw metals and can 

be solved as a feasible solution to a blending problem ( Danø, 

1960; Eiselt & Sandblom, 2007 ). Sometimes, each alloy also has 

its own maximum quantity. An example of such a scenario is 

given in Table 1 . 

In the example shown in Table 1 , the demand of iron is 56, 

and each unit of alloy 1 contains 24 units of iron, each unit of 

alloy 2 contains 8 units of iron, etc. Let x i be the quantity of 

alloy i to be extracted. Then the requirement on the demand 

of iron can be represented as a linear inequality 24 x 1 + 8 x 2 + 

3 x 3 + · · · + 2 x n ≥ 56 . Furthermore, the maximum amount of al- 

loy 1 available is 10, which can be represented as a linear in- 

equality x 1 ≤ 10. Similarly, we can write linear constraints for 

the demand of other metals and the quantity for other alloys. 

In this problem, the decision maker needs to determine the 

nonnegative job quantities x 1 , . . . , x n satisfying the above lin- 

ear constraints, and then assign these jobs to the parallel ma- 

chines such that the last completion time is minimized. This 

problem can be viewed as a minimum makespan parallel ma- 

chine scheduling problem, where the processing times of jobs 

satisfy some linear constraints. 

Table 2 

Example for the advertising media selection Problem. 

Sum of Each unit time broadcast provides 

ad 1 ad 2 ad 3 ��� ad n 

Attractions to women 20 100 100 ��� 10 ≥ 500 

Attractions to men 15 10 0 ��� 80 ≥ 500 

Attractions to teens 30 0 30 ��� 100 ≥ 200 
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Max time for ad 1 1 0 0 ��� 0 ≤ 20 

Min time for ad 1 1 0 0 ��� 0 ≥ 10 

Max time for ad 2 0 1 0 ��� 0 ≤ 35 
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2. Advertising media selection problem. A company has several par- 

allel broadcast platforms which can broadcast advertisements 

simultaneously, such as multiple screens in a shopping mall or 

different spots on a website. There is a customer who wants 

to broadcast his advertisements (ad 1 , . . . , n ) on these plat- 

forms. 1 It is required that each individual advertisement must 

be broadcast without interruption and the running time of each 

advertisement has to satisfy some linear constraints. The com- 

pany needs to decide the running times x i allocated to each ad- 

vertisement i , and also which advertisement should be released 

on which platform as well as the releasing order. The objective 

is to minimize the completion time. An example of such a prob- 

lem is given in Table 2 . 

Similar to the first example, the above-described problem can 

be naturally formulated as a minimum makespan parallel ma- 

chine scheduling problem in which the parameters (running 

times of the advertisements) are determined by a system of lin- 

ear constraints. 

3. Transportation problem. Both linear programming and machine 

scheduling problems have extensive applications in the field of 

transportation management ( Eiselt & Sandblom, 2007; Pinedo, 

2009, 2012 ). The parallel machine scheduling problem has 

many similarities with the transportation scheduling models. 

For example, a fleet of tankers or a number of workers can be 

considered as a parallel machine environment, and transport- 

ing or handling cargo is analogous to processing a job ( Pinedo, 

2009 ). Meanwhile, the transportation problem can be formu- 

lated as a linear program. Let x ij be the capacity of cargo that 

needs to be transported from origin i to destination j . They 

often have to satisfy certain supply and demand constraints, 

which are usually linear constraints. 

In practice, the decision maker decides how to assign cargo 

(jobs) to tankers or workers (parallel processors), so as to finish 

the handling as quickly as possible. This is a parallel machine 

scheduling problem. And the processing times usually depend 

on x ij s, which have to satisfy some linear constraints as men- 

tioned above. This also leads to a parallel machine scheduling 

problem with linear constraints. 

In this paper, we study the SLC problem, discussing the compu- 

tational complexity and algorithms for this problem under various 

settings. In particular, we show that if there is only one machine 

with an arbitrary number of linear constraints, or there is an ar- 

bitrary number of machines with no more than two linear con- 

straints, or both the number of machines and the number of linear 

constraints are fixed constants, then the problem is polynomial- 

time solvable via solving a series of linear programming prob- 

lems. If both the number of machines and the number of con- 

straints are inputs of the problem instance, then the problem is 

1 This example can be easily extended to cases with multiple customers. 
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