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a b s t r a c t 

In this work, we present a Lagrangean relaxation of the hull-reformulation of discrete-continuous op- 

timization problems formulated as linear generalized disjunctive programs (GDP). The proposed La- 

grangean relaxation has three important properties. The first property is that it can be applied to any 

linear GDP. The second property is that the solution to its continuous relaxation always yields 0–1 val- 

ues for the binary variables of the hull-reformulation. Finally, it is simpler to solve than the continuous 

relaxation of the hull-reformulation. The proposed Lagrangean relaxation can be used in different GDP 

solution methods. In this work, we explore its use as primal heuristic to find feasible solutions in a dis- 

junctive branch and bound algorithm. The modified disjunctive branch and bound is tested with several 

instances with up to 300 variables. The results show that the proposed disjunctive branch and bound 

performs faster than other versions of the algorithm that do not include this primal heuristic. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Lagrangean relaxation (or Lagrangean decomposition) of an op- 

timization program is a widely-used and powerful tool to solve 

problems. The review work by Guignard (2003) discusses how 

Lagrangean relaxation can be used in different solution meth- 

ods and applications. Fisher (2004) provides a theoretical back- 

ground for Lagrangean relaxation of mixed-integer linear programs 

(MILP). The general idea in the Lagrangean relaxation is to “du- 

alize” some of the constraints in the optimization problem (i.e. 

remove some constraints from the feasible region of the prob- 

lem, and penalize the violation of such constraints in the objec- 

tive function). This approach is particularly useful in problems with 

complicating constraints. Some of these problems appear in plan- 

ning ( Rong, Lahdelma, & Luh, 2008 ), scheduling ( Terrazas-Moreno, 

Trotter, & Grossmann, 2011 ), facility location ( Cornuejols, Fisher, & 

Nemhauser, 1977 ), and stochastic programming problems ( Carøe & 

Schultz, 1999 ). In these type of problems, a Lagrangean relaxation 

is simpler to solve than the original problems. 

A particular method that uses Lagrangean relaxation to solve 

MILPs is the Lagrangean relaxation based branch and bound 

( Geoffrion, 1974 ). This method follows the same general idea as 

the LP based branch and bound, but it solves the Lagrangean re- 

laxation at every node instead of the LP relaxation. This method 
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can be useful in problems in which, by dualizing the complicat- 

ing constraints, the Lagrangean relaxation is simpler to solve than 

the LP relaxation. One of the main difficulties in automating this 

strategy, or any other method that uses Lagrangean relaxation, is 

identifying the complicating constraints, which can be non-trivial 

and problem specific. Typically, the modeler needs to identify the 

problem structure and select the constraints to dualize, or needs 

to modify the model to allow such a structure ( Guignard, 2003 ). 

Linear discrete–continuous optimization problems are typically 

formulated as MILPs. An alternative framework for modeling these 

problems is generalized disjunctive programming (GDP) ( Raman 

& Grossmann, 1994 ). GDP models are used to represent discrete–

continuous problems through the use of disjunctions, algebraic 

equations, and Boolean and continuous variables. Linear GDP prob- 

lems can be reformulated as mixed-integer linear programs (MILP) 

and solved with existing MILP solvers. The GDP-to-MILP reformu- 

lations are the Big-M (BM) ( Wolsey & Nemhauser, 2014 ), multiple- 

parameter Big-M (MBM) ( Trespalacios & Grossmann, 2015 ) and 

Hull reformulation (HR) ( Beaumont, 1990; Lee & Grossmann, 

20 0 0 ). The HR reformulations is at least as tight, and typically 

tighter, than the other two. The downside of the HR is that it yields 

a larger MILP formulation. Alternatively to the MILP reformulation, 

GDP problems can be solved with specialized algorithms. In the 

case of linear GDP problems, the disjunctive branch and bound is 

a powerful solution method ( Beaumont, 1990; Lee & Grossmann, 

20 0 0 ). 

In this work we first present a Lagrangean relaxation of the HR 

for linear GDPs. The proposed Lagrangean relaxation is an MILP, 
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and it has three important characteristics. The first one is that the 

solution to the continuous relaxation of the proposed Lagrangean 

relaxation always yields 0–1 values for the binary variables of the 

HR. The second one is that it is easier to solve than the original 

problem (i.e. the HR). Furthermore, it is easier to solve than the 

continuous relaxation of the HR. The third one is that this relax- 

ation can be applied to any linear GDP. This means that there is 

no need to specify which are the complicating constraints in dif- 

ferent problems, so automating a method that uses this Lagrangean 

relaxation can be achieved. 

While there are different methods that can make use of the 

proposed Lagrangean relaxation, in this work we use it to improve 

the performance of the disjunctive branch and bound algorithm. In 

particular, we use it as a primal heuristic in the disjunctive branch 

and bound. A primal heuristic is a method whose purpose is to 

find good quality feasible solutions quickly (but does not guar- 

antee that such solution is optimal). In the modified disjunctive 

branch and bound, we evaluate the Lagrangean relaxation at ev- 

ery node and use its solution as primal heuristic for finding feasi- 

ble solutions to the problem. The continuous relaxation of the La- 

grangean relaxation always provides 0–1 values to the binary vari- 

ables, so the value of the 0–1 variables is fixed and a small LP is 

solved in search of feasible solutions. The limitation of the pro- 

posed Lagrangean relaxation it that the value of its objective func- 

tion is not better than the value of the objective function in the LP 

relaxation. 

This paper is organized as follows. Section 2 presents a brief 

background on Lagrangean relaxation of MILPs, generalized dis- 

junctive programming, and the disjunctive branch and bound. 

Section 3 presents the proposed Lagrangean relaxation of the 

HR. This section presents the formulation and main properties. 

The proposed Lagrangean relaxation is then incorporated into a 

disjunctive branch and bound, which is presented in Section 4 . 

Section 5 demonstrates the performance of the proposed disjunc- 

tive branch and bound in an illustrative example. The performance 

of the disjunctive branch and bound with the Lagrangean relax- 

ation is evaluated against other versions of the disjunctive branch 

and bound with several instances with up to 300 variables. The 

results of these instances are presented in Section 6 . Finally the 

conclusions of the paper are presented in Section 7 . 

2. Background 

2.1. Lagrangean relaxation of mixed-integer linear programs 

In this section we present a brief review of the Lagrangean re- 

laxation of mixed-integer linear programs. In this work, we con- 

sider the complicating constraints to be equality constraints. We 

refer the reader to the work by Guignard (2003) for a comprehen- 

sive review and for proofs of the Theorems and relations presented 

in this section. Throughout the manuscript, for any given optimiza- 

tion problem ( Q ) we denote v (Q ) its optimal value and F ( Q ) its 

feasible region. 

Without loss of generality, consider the following general 

mixed-integer linear program: 

min c T x 

Ax = b 

Cx ≤ d 

x ∈ X 

(P) 

where X contains the integrality and sign restrictions on x (e.g. 

X = R 

n −q 
+ × { 0 , 1 } q ). Consider that Ax = b are the complicating 

constraints (i.e. the problem becomes much simpler to solve 

without them). Let λ be a vector of weights, namely the Lagrange 

multipliers. 

The Lagrangean relaxation of (P) is: 

min c T x + λT (Ax − b) 

Cx ≤ d 

x ∈ X ( LR 1 λ) 

In ( LR 1 λ), the complicating constraints ( Ax = b) have been “du- 

alized” (i.e. the slacks of the complicating constraints have been 

added to the objective function, and the complicating constraints 

dropped from the formulation). Note that if these constraints are 

inequalities ( Ax ≤ b ), then the corresponding Lagrange multipliers 

are non-negative. 

It is easy to see that ( LR 1 λ) is a relaxation of (P) , since F ( P ) ⊆
F ( LR 1 λ). Therefore, v (LR 1 λ) ≤ v ( P ) in general. 

Theorem 2.1. 

1. If x ( λ) is an optimal solution of ( LR 1 λ) for some λ, ( LR 1 λ) 

is bounded, and the original problem is feasible, then c T x (λ) + 

λT (Ax − b) ≤ v ( P ) . 
2. If in addition x ( λ) is feasible for (P) , then x ( λ) is an optimal solu- 

tion of (P) , and c T x (λ) = v ( P ) 

Theorem 2.1 states that Lagrangean relaxation always provides a 

lower bound for the MILP problem. The best possible lower bound 

that the Lagrangean relaxation provides can be obtained with the 

following optimization problem: 

max 
λ

v (LR 1 λ) (LD) 

Problem (LD) is called the Lagrangean dual of (P) with respect 

to the complicating constraints Ax = b. 

Let ( RP ) be the continuous relaxation of (P) defined by omitting 

the integrality requirements in the set X . In general, v (RP ) ≤ v (LD ). 

In the particular case in which the Lagrangean dual has the in- 

tegrality property (i.e. the extreme points of { x | Cx ≤ d } are in X ), 

v (RP ) = v (LD ). 

In this work, we present a Lagrangean relaxation applicable to 

the MILP reformulation of problems formulated as GDPs. In the 

next section, we introduce the GDP formulation and the two main 

GDP-to-MILP reformulations. 

2.2. Linear generalized disjunctive programming 

GDP is an alternative framework for modeling discrete–

continuous optimization problems. In this section we present the 

formulation for linear GDPs, as well as the two traditional GDP- 

to-MILP reformulations: the BM and the HR. For a comprehensive 

review on formulating GDP problems, as well as the theory for 

general nonlinear GDPs, we refer the reader to Grossmann and 

Trespalacios (2013) . 

The general linear GDP formulation can be represented as 

follows: 

min c T x 

s.t. Gx ≤ g 

∨ 

i ∈ D k 

[
Y ki 

A 

ki x ≤ a ki 

]
k ∈ K 

� 

i ∈ D k 
Y ki k ∈ K 

�(Y ) = T rue 

x lo ≤ x ≤ x up 

x ∈ R 

n 

Y ki ∈ { T rue, F alse } k ∈ K, i ∈ D k 

(GDP) 

In (GDP) , the objective is to minimize a linear function of the 

continuous variables x ∈ R 

n . The global constraints of the problem 
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