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a b s t r a c t 

In an algorithm for a problem whose candidate solutions are selections of objects, an ejection chain is 

a sequence of moves from one solution to another that begins by removing an object from the current 

solution. The quadratic multiple knapsack problem extends the familiar 0–1 knapsack problem both with 

several knapsacks and with values associated with pairs of objects. A hybrid algorithm for this problem 

extends a local search algorithm through an ejection chain mechanism to create more powerful moves. 

In addition, adaptive perturbations enhance the diversity of the search process. The resulting algorithm 

produces results that are competitive with the best heuristics currently published for this problem. In 

particular, it improves the best known results on 34 out of 60 test problem instances and matches the 

best known results on all but 6 of the remaining instances. 

© 2016 Published by Elsevier B.V. 

1. Introduction 

The quadratic multiple knapsack problem (QMKP) ( Hiley & Jul- 

strom, 2006 ) extends the well-known 0–1 knapsack problem in 

two aspects. First, each knapsack possesses its own capacity, and 

each object can be assigned to at most one knapsack. Second, in 

addition to their individual values, objects have values in pairs that 

accrue to the total objective value when both objects in a pair are 

assigned to the same knapsack. The objective of QMKP is to fill 

the knapsacks with objects of maximum total value without ex- 

ceeding the capacity of any knapsack. As a generalization and a 

combination of the multiple knapsack problem ( Hung & Fisk, 1978 ) 

and the quadratic knapsack problem ( Gallo, Hammer, & Simeone, 

1980 ), QMKP is known to be NP-hard ( Hiley & Julstrom, 2006 ). 

Meta-heuristic algorithms ( García-Martínez, Glover, Rodriguez, 

Lozano, & R., 2013; García-Martínez, Rodriguez, & Lozano, 2014; Hi- 

ley & Julstrom, 2006; Sundar & Singh, 2010 ) are powerful tools for 

handling the QMKP problem. Among these algorithms, local search 

is one of the most well-known techniques. However, local searches 

based on simple neighborhood moves may easily fall into the lo- 

cal optima. To overcome this drawback, a variable depth method 

called ejection chain approach examines a large search space by 
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generating a sequence of interrelated simple moves to create com- 

pound moves. In the past two decades, ejection chain methods 

have been widely used to tackle a variety of challenging optimiza- 

tion problems (see Section 2.2 ). The current work is motivated by 

these applications to employ ejection chain methods for the QMKP. 

Different from most local search heuristics that directly move 

from one solution to another, the ejection chain approach first 

moves to intermediate structures, called reference structures, be- 

fore moving to another solution. During these procedures, a certain 

amount of infeasibility is imposed on the initial solution, which 

has to be ejected to obtain a new feasible solution. The ejection of 

infeasibility can be delayed to create a chain by moving to other 

reference structures. At each step of the chain, feasible solutions 

can be obtained by ejecting the infeasibility. Hence, the approach 

is termed ejection chain algorithm (ECA). The ejection chain ap- 

proach can explore much larger search spaces in a compact man- 

ner than traditional local search heuristics based on simple neigh- 

borhood moves. 

The main contributions of this paper are summarized as fol- 

lows: 

• To our knowledge, this work is the first to employ the ejection 

chain method to solve the QMKP. In addition, this technique has 

never been used to address other knapsack problems. 
• Both greedy and random operators are embedded in the pro- 

posed ejection chain local search. This study also proposes an 
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effective perturbation phase based on two specialized pertur- 

bation operators and an adaptive management mechanism. 
• The performance of the ECA is tested on 60 benchmark in- 

stances that were extensively used in previous studies. The 

outcomes show the efficacy of this algorithm in terms of both 

solution quality and robustness. In particular, the ECA generates 

results competitive with those of state-of-the-art approaches 

presented in literature by improving the best known results on 

34 instances and matching the best known results on all but 6 

of the remaining instances. 
• The effects of some important parameter settings and compo- 

nents of the proposed algorithm are analyzed. 

The remainder of the paper is organized as follows: Section 2 

presents the mathematical formulation of the QMKP and the re- 

lated works. Section 3 describes the main components of the ECA. 

Section 4 presents the comprehensive computational results and 

comparisons between the ECA and some other best-performing al- 

gorithms in literature. The effects of several important components 

and the parameter settings of the proposed algorithm are analyzed 

in Section 5 . Finally, Section 6 concludes this study and gives sug- 

gestions for future research directions. 

2. Problem formulation and related works 

2.1. Mathematical formulation of QMKP 

The QMKP involves assigning a set of objects into knapsacks, 

such that the total profit of all objects in the knapsacks is maxi- 

mized without violating the capacity constraint of any knapsack. It 

includes a set N = { 1 , . . . , n } of n objects and a set M = { 1 , . . . , m } 
of m knapsacks. Each object i ∈ N has a profit value v i and a weight 

w i . Each pair of objects i ∈ N and j ∈ N ( i � = j ) has a profit value 

v i j , while each knapsack k ∈ M possesses a capacity C k . Each ob- 

ject should be assigned to at most one knapsack k such that the 

total weight of the objects in each knapsack k does not exceed its 

capacity C k . The value of an assignment of objects N to knapsacks 

M is the sum of the linear values of the included objects and the 

quadratic values of the object pairs that fall into the same knap- 

sack. In the QMKP, the objective is to maximize the total profit 

value V sum 

. The decision variable x ik is 1 if object i is assigned to 

knapsack k ; otherwise, the value is 0. Thus, QMKP can be formu- 

lated as follows: 

Max V sum 

= 

n ∑ 

i =1 

m ∑ 

k =1 

x ik v i + 

n −1 ∑ 

i =1 

n ∑ 

j= i +1 

m ∑ 

k =1 

x ik x jk v i j , (1) 

subject to 

m ∑ 

k =1 

x jk ≤ 1 ; j = 1 , . . . , n, (2) 

n ∑ 

j=1 

x jk w j ≤ C k ; k = 1 , . . . , m, (3) 

x jk ∈ { 0 , 1 }; j = 1 , . . . , n ; k = 1 , . . . , m. (4) 

In the above formulation, objective function (1) aims to maximize 

the total profit value. Constraint (2) guarantees that each object 

can be assigned to at most one knapsack. Constraint (3) ensures 

that the total weight of any knapsack does not exceed its capacity. 

Constraint (4) imposes binary restrictions on decision variables. 

2.2. Related works 

In this section, related works on the algorithms for solving the 

QMKP and applications of the ejection chain approach are briefly 

reviewed. 

Hiley and Julstrom (2006) presented the first study on QMKP 

in literature. The authors introduced three heuristic methods, 

namely, greedy heuristic, stochastic hill-climber method, and 

genetic algorithm. Greedy heuristic method filled one knapsack 

with one object at a time by choosing an unassigned object with 

the maximum profit/weight ratio. Hill-climber method removed 

some objects from the knapsacks, and then refilled the knapsacks 

by applying the afore mentioned greedy heuristic method. Genetic 

algorithm encoded candidate solutions as strings with lengths 

equal to the number of objects and employed the hill-climber 

method as its mutation operator. Singh and Baghel (2007) pre- 

sented a new steady-state grouping genetic algorithm for QMKP. 

Saraç and Sipahioglu (2007) proposed another genetic algorithm 

to solve QMKP. They developed a specialized crossover operator 

to generate feasible solutions and presented two distinct mutation 

operators. Sundar and Singh (2010) introduced an artificial bee 

colony (ABC) algorithm based on the swapping of unassigned 

objects with already assigned ones. Experimental results demon- 

strated the superiority of the approach over several reference 

algorithms in terms of solution quality. The computational results 

obtained by Wang, Kochenberger, and Glover (2012) indicated that 

the branch and cut method can effectively solve the quadratic 

knapsack problem with multiple knapsack constraints. 

Recently, García-Martínez et al. (2014) combined a novel local 

search procedure with an iterated greedy approach based on a 

tabu mechanism for QMKP. They extended the local search method 

proposed by Sundar and Singh (2010) to exchange any two ob- 

jects assigned to different knapsacks. The tabu-based destruction 

mechanism stores the components that were recently removed 

from the incumbent solution via short-term memory and prevents 

these components from being added into the partial solution again. 

García-Martínez et al. (2013) also addressed the QMKP by using 

the strategic oscillation (SO) method. They defined critical levels 

for QMKP and designed strategies to exploit the constraint struc- 

ture by effectively exploring solutions in the feasible and infeasible 

regions close to the constraint boundaries. 

For applications of the ECA, Glover (1996) originally designed 

an ejection chain strategy to generate neighborhoods of compound 

moves with attractive properties for the traveling salesman prob- 

lem. Rego and Roucairol (1996) employed an ejection chain pro- 

cedure to generate compound moves to solve the vehicle rout- 

ing problem. Yagiura, Ibaraki, and Glover (2004) embedded the 

ejection chain approach into neighborhood construction combined 

with tabu search to address the generalized assignment problem. 

Other successful and recent applications of this methodology are 

detailed in Burke and Curtois (2010) ; Kingston (2012) ; Lozano, 

Duarte, Gortázar, and R. (2012) ; Rego, James, and Glover (2010) ; 

Sevaux, Rossi, Soto, Duarte, and R. (2013) . 

3. Ejection chain algorithm 

The ECA is initiated by selecting elements to undergo a change 

of state (e.g., to remove one object from its knapsack) ( Glover, 

1996 ). Then, it explicitly identifies a so-called reference structure, 

which is similar to but slightly different from a solution, for exam- 

ple violating some constraints or missing some elements. On the 

basis of several predefined transition rules, moves are generated 

from one reference structure to another, and back from reference 

structures to solutions. The transition rules, together with the ref- 

erence structures, define the ejection neighborhood moves. 

In general, the framework of the ECA consists of three phases: 

initial solution construction, ejection chain local search, and adap- 

tive perturbation. More precisely, a greedy constructive algorithm 

first produces a promising solution as the initial solution. Then, it 

iteratively alternates between an ejection chain local search phase 

(to perform intensive search) and a perturbation phase (to discover 



Download English Version:

https://daneshyari.com/en/article/479247

Download Persian Version:

https://daneshyari.com/article/479247

Daneshyari.com

https://daneshyari.com/en/article/479247
https://daneshyari.com/article/479247
https://daneshyari.com

