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a b s t r a c t 

Despite many proposed alternatives, the predominant model in portfolio selection is still mean–variance. 

However, the main weakness of the mean–variance model is in the specification of the expected returns 

of the individual securities involved. If this process is not accurate, the allocations of capital to the dif- 

ferent securities will in almost all certainty be incorrect. If, however, this process can be made accurate, 

then correct allocations can be made, and the additional expected return following from this is the value 

of information. This paper thus proposes a methodology to calculate the value of information. A related 

idea of a level of disappointment is also shown. How value of information calculations can be important 

in helping a mutual fund settle on how much to set aside for research is discussed in reference to a 

Taiwan Stock Exchange illustrative application in which the value of information appears to be substan- 

tial. Heavy use is made of parametric quadratic programming to keep computation times down for the 

methodology. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The problem of portfolio selection – on how to invest a sum 

of money across a series of assets for optimal return – continues 

to be a challenge, as it always has been ever since there has been 

accumulated wealth in the world. Let there be a beginning of a 

holding period and an end of the holding period. Also, let r i be the 

return on asset i over the holding period, and w i be the proportion 

of initial capital invested in asset i at the beginning of the holding 

period, and held in asset i throughout the holding period. With the 

goal being to maximize end of period wealth, and with constraints 

in canonical form, the problem of portfolio selection is 

max r p = 

n ∑ 

i =1 

r i w i 

s.t. 

n ∑ 

i =1 

w i = 1 

w i ≥ 0 for all i (1) 

where r p is the return on one’s capital over the holding period, 

n is the number of securities eligible for inclusion in a portfolio, 
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and the sum-to-one constraint along with the nonnegativity re- 

strictions define the feasible region in decision space. In the model, 

r p is portfolio return, and with the w i weights arranged in the form 

of w = (w 1 , . . . , w n ) , w is called a fund allocation vector. 

The problem looks innocuous enough, as it appears to be a lin- 

ear programming problem, which in fact it is, except for the ob- 

jective function. The difficulty in the objective function is that the 

r i , the returns of the individual securities over the holding period, 

are random variables, and hence r p is a random variable. Portfolio 

selection is thus the problem of maximizing the random variable 

of portfolio return – but to do so it is necessary to make decisions 

on the w i at the beginning of the holding period based upon the 

values of the r i that are not known until the end of the holding 

period. This makes Model (1) a stochastic programming problem. 

In this form, the problem of portfolio selection has been much 

discussed and analyzed. Thousands of papers have been written 

on the problem as the basic model can take on many related 

forms. 

As defined by Caballero, Cerdá, Muñoz, Rey, and Stancu- 

Minasian (2001) , if in a programming problem some of the 

parameters take unknown values at the time of making a decision, 

and these parameters are random variables, then the problem 

is a stochastic programming problem. Stochastic programming 

problems are notoriously difficult to solve, and solution methods 

are usually developed based upon the type of problem being con- 

sidered ( Beraldi, Violi, & Simone, 2011; Shapiro & Philpott, 2007 ). 
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One often contemplated approach is to employ interpretations and 

assumptions so as to strive for an equivalent deterministic formu- 

lation that can be solved in a reasonably straightforward fashion. 

Through reasoning such as overviewed in many places as in 

Huang and Litzenberger (1988) , it is generally accepted that in- 

vestors are expected utility maximizers. Under this assumption, 

and where U is the investor’s utility function, Model (1) can be 

rewritten equivalently as 

max E[ U(r p )] 

s.t. 

n ∑ 

i =1 

w i = 1 

w i ≥ 0 for all i (2) 

An advantage of Model (2) is that all random variables have been 

cleared from the formulation. With investors assumed to possess 

declining marginal utility, U is at least known to be concave and 

increasing. 

Two schools of thought have evolved on how to address Model 

(2) with its expected utility objective function. One is to try to ac- 

quire enough information about the decision maker’s preferences 

to enable the creation of an optimization problem that can be 

solved directly for an optimal portfolio. The “safety first” strategy 

of Roy (1952) is an example of this approach. More recent exam- 

ples involving a range of techniques, although in the multi-criteria 

arena, can be found, for instance, in Ballestero and Romero (1996) , 

Arenas Parra, Bilbao Terol, and Rodríguez Uría (2001) , Bilbao-Terol, 

Pérez-Gladish, Arenas-Parra, and Rodríguez-Uría (2006) , Abdelaziz, 

Aouni, and El-Fayedh (2007) , Fang, Lai, and Wang (2008) , and 

Aouni, Colapinto, and La Torre (2014) . But these techniques are dif- 

ficult because the setting up of the optimization problem generally 

requires more knowledge about the optimal solution to be found 

than is possible beforehand. The other school of thought involves 

parameterizing U and then attempting to solve Model (2) for all 

unknown values of U ’s parameter(s). 

Now, if U is quadratic, which is a common assumption in port- 

folio selection, there is only one parameter, and it is not difficult 

to show, as in many places including Steuer, Qi, and Hirschberger 

(2007) , that E [ U ( r p )] is a function of the mean and variance of r p 
in the form of 

E(r p ) − 1 

t 
V (r p ) (3) 

where t is a risk tolerance parameter. With (3) concave and in- 

creasing, all potentially optimizing solutions of Model (2) , with 

(3) substituted for E [ U ( r p )], can be obtained by computing all effi- 

cient ( E , V ) mean–variance combinations that occur in the follow- 

ing two-objective program: 

max E = E(r p ) 

min V = V (r p ) 

s.t. 

n ∑ 

i =1 

w i = 1 

w i ≥ 0 for all i (4) 

Recognizing that the two objectives are to be optimized simul- 

taneously, an ( E , V ) combination is efficient if and only if it is not 

possible to improve one of the criteria without deteriorating the 

other. Putting (4) into practice, we have 

max E = 

n ∑ 

i =1 

μi w i 

min V = 

n ∑ 

i =1 

n ∑ 

j=1 

w i σi j w j 

s.t. 

n ∑ 

i =1 

w i = 1 

w i ≥ 0 for all i (5) 

where μi is the expected return of the i th security (that is, of the 

r i random variable), σ ii is the variance of r i , and the σ ij , i � = j , are 

the covariances of the random variables r i and r j over the hold- 

ing period. In bi-criterion format, this is the famous mean–variance 

model of Markowitz (1952) , and as prescribed by Markowitz, the 

approach is as follows: 

1. Specify Model (5) with all of its required μi , σ ii and σ ij values. 

2. Solve Model (5) for all efficient ( E , V ) combinations and the 

fund allocation solution vector w , as a function of V , pertaining 

to them. Methods for doing this go back to Markowitz (1956) . 

3. Display the efficient ( E , V ) combinations in the form of a graph, 

called the efficient frontier. 

4. Have the investor select from the efficient frontier his or her 

most preferred ( E , V ) combination. 

5. For this ( E , V ) combination, retrieve from the w of Step 2 the 

specific portfolio composition corresponding to the V of the se- 

lected ( E , V ) combination. Provided all has been carried out ac- 

curately, this then is the investor’s optimal portfolio. 

As seen, the efficient frontier is central to the approach. This is 

because the efficient frontier displays precisely all efficient ( E , V ) 

combinations. That is, if a particular fund allocation vector can po- 

tentially be an optimal solution of Model (2) , its ( E , V ) combination 

will be on the efficient frontier, and conversely, if a particular fund 

allocation vector cannot be an optimal solution of Model (2) , its ( E , 

V ) combination will not be on the efficient frontier. 

The success of Markowitz’s mean–variance approach is often at- 

tributed to its mathematical tractability, but there are other rea- 

sons. One is that the approach allows different investors to have 

different optimal portfolios. Another is that, because one’s optimal 

portfolio is usually only recognized as such after seeing that ev- 

erything else is worse, the approach’s efficient frontier lets one see 

the “everything else.” However, a caveat comes with the approach. 

While the evolution of Model (5) represents considerable 

achievement with regard to theory, the model is in fact a monster 

with regard to its demands for data. That is, for an upcoming hold- 

ing period, the model needs n expected returns, n variances, and 

(n 2 − n ) / 2 covariances. This is a lot of information, and there may 

be no good way to get all of it. Hence there is a legitimate worry 

that errors in the values used for at least some of these quantities 

will propagate through Model (5) and affect the resulting “optimal”

solution. 

Fortunately, the σ ii and the σ ij do not create any especial diffi- 

culties as they are readily estimated from historical data and tend 

to be stable from holding period to holding period. However, as 

brought into sharp relief by Best and Grauer (1991) , the μi are a 

different story. Not only are the μi lacking in the persistence of 

the variances and covariances (see DeMiguel & Nogales, 2009; Kan 

& Smith, 2008; Siegal & Woodgate, 2007 ), but as shown in Chopra 

and Ziemba (1993) , at a risk tolerance of 50, errors in the μi are 

about 11 more serious than errors of the same relative size in the 
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