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Abstract

This research presents a new constrained optimization approach for solving systems of nonlinear equations. Partic-
ular advantages are realized when all of the equations are convex. For example, a global algorithm for finding the zero
of a convex real-valued function of one variable is developed. If the algorithm terminates finitely, then either the algo-
rithm has computed a zero or determined that none exists; if an infinite sequence is generated, either that sequence con-
verges to a zero or again no zero exists. For solving n-dimensional convex equations, the constrained optimization
algorithm has the capability of determining that the system of equations has no solution. Global convergence of the
algorithm is established under weaker conditions than previously known and, in this case, the algorithm reduces to
Newton’s method together with a constrained line search at each iteration. It is also shown how this approach has
led to a new algorithm for solving the linear complementarity problem.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction and notation

Due to its importance in solving problems, much effort has been devoted to developing algorithms for
finding a zero of an (n · n) system of nonlinear equations (see [15,2,7]). In this work, a new constrained
optimization approach is proposed. The corresponding algorithm can sometimes solve problems that other
methods cannot—for instance, several examples are provided where the proposed algorithm succeeds and
Newton’s method fails. However, the primary advantages of the proposed algorithm are realized when all
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of the equations are convex. Although less common, there are problems that give rise to the need to solve
such a system. One of the most important applications is the linear complementarity problem (see [4])
which, given an (n · n) matrix M and an n-vector q, is the problem of finding two n-vectors w and x such
that:

ð1Þ w ¼ Mx þ q;

ð2Þ w; x P 0;

ð3Þ wT x ¼ 0.

ðLCPÞ

Mangasarian [10] showed that this problem is equivalent to finding a zero of the piecewise-linear convex
function f : Rn ! Rn, in which each coordinate function fi : Rn ! R1 is defined by fi(x) = max{�(Mx +
q)i,�xi}. For this reason, others have studied the problem of solving a system of convex equations. For
example, Eaves [6] proposes a homotopic approach for solving piecewise-linear convex equations.

An algorithm is developed here to solve a constrained optimization problem associated with a system of
differentiable convex equations. Ortega and Rheinboldt [12] and more extensively Moré [11] propose vari-
ants of Newton’s method to solve such systems. Although applications of differentiable convex systems
appear to be scarce, several applications from the literature are solved in Section 5.1 with the proposed
algorithm but, for the most part, the work here is of theoretical interest. Specifically, the advantages of
the proposed approach include the ability: (1) to detect that the system has no solution; (2) to establish glo-
bal convergence under weaker conditions than previously known; and (3) to extend the algorithm from dif-
ferentiable to piecewise-linear convex equations (and so, to the LCP as a special case).

In Section 2, a global algorithm is developed for finding a zero of a real-valued convex function of one
variable or determining that no such point exists. The results in Section 2 are generalized in Section 3 to
construct a constrained optimization algorithm for solving certain (n · n) systems of convex equations. Sec-
tion 4 deals with computational implementation and conditions for convergence. Algorithmic performance
and applications are presented in Section 5, which also includes a comparison of this approach with others
for finding a zero of a system of nonlinear equations.

For the most part, standard vector, matrix, and sequence notation is used. With regard to vectors, sub-
scripts refer to components and superscripts are used for sequences. The vector whose coordinates are all
1 is denoted by e. If a sequence of vectors {xk} in Rn converges to x 2 Rn along a subsequence K, it will be
written as {xk}! x as k 2 K. It is assumed that the reader is familiar with basic notions associated with a
convex function f : Rn ! R1 and in particular the gradient and subgradient inequalities [the set of all sub-
gradients of f at x is denoted by of(x)]. The reader is referred to Rockafellar [16] for an in-depth discus-
sion of convex functions. Finally, if V is a non-empty subset of Rn, then (V)* denotes the set of all
non-empty subsets of V. Let S and T be non-empty sets. A point-to-set map M : S! (T)* is said to
be closed at x 2 S if whenever {xk}! x, yk 2M(xk) for all k, and {yk}! y, it follows that y 2M(x).
M is closed if it is closed at each x 2 S. With these notations, the algorithms and their proofs of conver-
gence can be presented.

2. A global algorithm for finding a zero of a convex function on R1

A modified Newton algorithm is proposed for finding a zero of a convex function h : R1 ! R1 or deter-
mining that no such point exists. If the algorithm terminates finitely, then either a zero of h is produced or
no such point exists. On the other hand, if the algorithm generates an infinite sequence of points, then either
the sequence converges to a zero of h or one can conclude that no zero of h exists. The algorithm proceeds
like Newton’s method, except that the derivative is replaced with an arbitrary subgradient. The steps are as
follows:
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