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a b s t r a c t

In this study, we consider the minimax regret 1-sink location problem with accessibility, where all of the

weights should always evacuate to the nearest sink point along the shortest path in a dynamic general net-

work with positive edge lengths and uniform edge capacity. Let G = (V, E) be an undirected connected simple

graph with n vertices and m edges. Each vertex has a weight that is not known exactly but the interval to

which it belongs is given. A particular assignment of a weight to each vertex is called a scenario. The problem

requires that a point x should be found as the sink on the graph and all the weights evacuate to x such that

the maximum regret for all possible scenarios is minimized. We present an O(m2n3) time algorithm to solve

this problem.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

The minimax regret sink location problem was first proposed by

Cheng et al. (2013) in the context of the Tohuku-Pacific Ocean Earth-

quake, which occurred in Japan on March 11, 2011. In general, the

problem can be described as follows. We are given an undirected

connected graph G = (V, E), |V | = n and |E| = m. Each vertex is as-

sociated with a vertex weight that is not known exactly but the in-

terval to which it belongs is known. Each edge is associated with an

edge length and an edge capacity. The edge length is the distance be-

tween the two endpoints of the edge and the edge capacity is the

upper boundary for the number of weights that enter an edge per

unit time. The objective is to find k(k ≥ 1) sink points on G such that

all the weights are sent to one of the k sinks and the maximum regret

of the evacuation time is minimized. In this case, the evacuation time

usually refers to the maximum time, i.e., the time required by the last

unit weight to complete evacuation.

Cheng et al. (2013) considered the minimax regret 1-sink location

problem in a dynamic path network with a uniform edge capacity,

where an O(nlog2n) time algorithm was proposed for the problem.

Later, Wang (2014) and Higashikawa et al. (2015) proposed two im-

proved algorithms to address the problem, which each had a time

complexity of O(nlog n). It is noteworthy that the algorithm proposed

by Wang (2014) further reduced the space complexity degree of
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previous algorithms. Li, Xu, and Ni (2014) considered the minimax

regret vertex 2-sink location problem in dynamic path networks with

a uniform edge capacity, where the sinks are limited to being lo-

cated on the vertex of the path, and an O(n3log n) time algorithm

was proposed. For a general k, Ni, Xu, and Dong (2014) proposed

an O(n1+k( log n)1+log k) time algorithm, whereas Arumugam, Augus-

tine, Golin, and Strikanthan (2014) proposed two algorithms for this

problem. The first algorithm proposed by Arumugam et al. (2014) is

better for small values of k, where it runs in O(kn2(log n)k), whereas

the second algorithm is better for larger values of k, where it runs

in O(kn3log n). It is noteworthy that Arumugam et al.’s algorithm is

the first polynomial time algorithm for this problem. For other net-

works, Higashikawa, Golin, and Katoh (2014a) considered the mini-

max regret 1-sink location problem in dynamic tree networks with

a uniform edge capacity and they proposed an O(n2log2n) time al-

gorithm. For the minimax regret 1-sink location problem in dynamic

cycle networks with a uniform edge capacity, Xu and Li (2015) pro-

posed an O(n3log n) time algorithm. Bhattacharya and Kameda (2015)

proposed several algorithms which improved the previous best algo-

rithms for several minimax regret sink location problems, including

an O(n) time algorithm for the minimax regret 1-sink location prob-

lem in a dynamic path network, an O(nlog n4) time algorithm for the

minimax regret 2-sink location problem in a dynamic path network,

and an O(nlog n) time algorithm for the minimax regret 1-sink loca-

tion problem in a dynamic tree network.

When the exact weight of each vertex is known, the objective of

the sink location problem is to find the sink location in the given

network that minimizes the evacuation time. For path networks,
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Higashikawa, Golin, and Katoh (2014b) solved the k-sink location

problem in dynamic path networks with a uniform edge capacity in

O(knlog n) time for a general k and proposed an improved algorithm

with a time complexity of O(kn) (Higashikawa et al., 2014b). Tree net-

works have been addressed in several studies. Mamada, Makino, and

Fujishige (2002) considered the vertex 1-sink location problem in

a dynamic tree network with general capacities while an O(nlog2n)

time algorithm for this problem was proposed by Mamada, Uno,

Makino, and Fujishige (2006). Higashikawa et al. (2014a) described

an O(nlog n) time algorithm for the problem when the capacities

are uniform. In addition, it should be mentioned that the studies of

Higashikawa et al. (2014b) and Higashikawa, Golin, and Katoh (2014c)

also considered a situation where the evacuation time was denoted

as the total time instead of the maximum time.

If there is only one sink and the route to the sink is unique for

any vertex, it is obvious that the weights on a vertex will evacuate to

the sink along that unique route. If there is more than one sink or the

route from a vertex to a sink is not unique, then we need to make a de-

cision such that the evacuation solution (which includes the objective

sink and the corresponding evacuation path) is defined for every ver-

tex. In previous related studies (Arumugam et al., 2014; Bhattacharya

& Kameda, 2015; Higashikawa et al., 2014b; 2014c; Li et al., 2014; Ni

et al., 2014; Xu & Li, 2015), the division point is set to the optimal

value, i.e., the weight of any vertex will evacuate to the sink(s) with

the optimal evacuation solution, which allows the weights to evacu-

ate to more distant sinks rather than the nearest and/or complete

evacuation along a path that is not the shortest path. It is assumed

that the weights on a vertex should evacuate to the same sink and

we also retain this assumption in this paper. Thus, the optimal evac-

uation solution is the solution with the minimum evacuation time

for the weights between any two neighboring sink points. However,

when an emergency, such as an earthquake, occurs, people do not be-

have as expected during the evacuation process and they will usually

evacuate to the nearest shelter via the shortest path (known as the

intuitive evacuation solution) rather than evacuating according to the

optimal evacuation solution. Indeed, the optimal evacuation solution

might not be known when an emergency occurs.

Thus, in this paper, we consider the minimax regret sink location

problem with accessibility where all of the weights are assumed to

evacuate to the nearest sink via the shortest path. We consider this

problem in a general network G = (V, E) where the number of sink

points is 1. Throughout this study, we assume that each edge has a

uniform edge capacity. As usual, and without loss of generality, we

also assume that the undirected connected graph G contains no loops

or multiple edges, i.e., the graph G is an undirected connected simple

graph. Given a dynamic general network G, the weight of every vertex

is known as an interval. A specific assignment of a weight to each

vertex is called a scenario. The problem involves finding a point x on

G as the sink point such that the maximum regret of the evacuation

time should be as small as possible. The remainder of this paper is

organized as follows. In Section 2, we provide some useful definitions

and properties. In Section 3, we present an O(m2n3) time algorithm

for the minimax regret 1-sink location problem in a dynamic general

network, and we present our conclusions in Section 4.

2. Definitions and preliminaries

2.1. Definitions

Let G = (V, E) be an undirected connected simple graph where

V = {v1, . . . , vn}. A positive number l(e) (called the length of e) and

a positive number c (called the uniform edge capacity) are associated

with each of the |E| = m edges, and an interval W(vi) =
[
wi, wi

]
with

0 < wi ≤ wi (called the weight interval of vi) is associated with each

of the |V | = n vertices. Let S denote the Cartesian product of all W(vi)
for 1 ≤ i ≤ n. When a scenario s ∈ S is given, we use the notation wi(s)
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Fig. 1. Illustration of T(x, s) where x = vp.

to denote the weight of each vertex vi ∈ V under the scenario s. Let τ
be a constant that represents the time required to traverse the unit

distance of each unit weight. We also use a notation G to denote the

set of all points on G. The distance between any two points x and y on

G, which is represented by dx, y (note that dy,x = dx,y), is the length of

the shortest path on G from x to y. We assume that the distance be-

tween any two vertices is known. In fact, the distance matrix (which

gives the distance between any two vertices) of a general graph can be

obtained in O(n3) time with the Floyd–Warshall algorithm. Of course,

there are algorithms which are better than O(n3) time and for more

details please refer to Williams (2014). Since the time required to de-

termine the distance matrix has no effect on the time complexity of

our algorithm, in this paper we just assume the distance matrix is

known. Because G is connected, m ≥ n − 1 holds. When m = n − 1, G

is a tree, and thus we assume that m ≥ n in this study.

Next, we define the time required for the evacuation of all weights

to x ∈ G under s ∈ S, i.e., T(x, s). Because there is only one sink and all

of the weights are assumed to complete their evacuation along the

shortest path, then the evacuation solution for every vertex is pro-

vided as long as the sink point is given. In other words, with a given

sink point x, the general graph G can be viewed as a tree graph G(x)

rooted at x, based on which the evacuation paths for all of the vertices

are represented. For any point x, in G(x) we define the vertices adja-

cent to x as neighbors of x, which are denoted as Nx. Thus, for a vertex

vi, Nvi
=

{
v j | e =

(
vi, v j

)
exists in G(x)

}
, and for a point x ∈ e, if we

assume that e = (vp, vq), x �= vp, and x �= vq, then Nx = {vp, vq}. Note

that when we state that x ∈ e = (vp, vq), we always mean the points

on e except for the two endpoints vp and vq, unless indicated other-

wise. With a given sink x, for any vertex vi ∈ G, the evacuation path

of vi must contain the vertex v j ∈ Nx. Let G(x, vi) be a subtree of G(x)

rooted at vi and T vi(x, s) is the evacuation time required for all of the

weights on G(x, vi) to complete their evacuation to x under scenario

s. Then, we have

T(x, s) = max
vi∈Nx

{
T vi(x, s)

}
. (1)

For example, as shown in Fig. 1, T(vp, s) = max
{

T v1(vp, s),

T v2(vp, s), T v3(vp, s), T vq(vp, s)
}

. If x ∈ e = (vp, vq), then T(x, s) =
max

{
T vp(x, s), T vq(x, s)

}
. We assume that vi ∈ Nx, T vi(x, s) can be

obtained by transiting G(x, vi) to a path (Kamiyama, Katoh, &

Takizawa, 2006). Suppose that n′ vertices in G(x, vi) are denoted as

u1, u2, . . . , un′(= vi) such that dx,ui
≤ dx,ui−1

for 2 ≤ i ≤ n′. Kamiyama

et al. (2006) proved that T vi(x, s) does not change if x and ui for 1 ≤
i ≤ n′ are relocated on a line with the same capacity such that dx,ui

remains unchanged. Thus, T vi(x, s) can be represented as follows:

T vi(x, s) = max
1≤ j≤n′

{
τ · dx,uj

+
∑

1≤l≤ j wl(s)

c

}
. (2)
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