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a b s t r a c t

This paper studies strategic decentralization in binary choice composite network congestion games. A player

decentralizes if she lets some autonomous agents to decide respectively how to send different parts of her

stock from the origin to the destination. This paper shows that, with convex, strictly increasing and differen-

tiable arc cost functions, an atomic splittable player always has an optimal unilateral decentralization strat-

egy. Besides, unilateral decentralization gives her the same advantage as being the leader in a Stackelberg

congestion game. Finally, unilateral decentralization of an atomic player has a negative impact on the social

cost and on the costs of the other players at the equilibrium of the congestion game.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

This paper introduces strategic decentralization into composite

network congestion games, and studies its properties in a specific

subclass of such games. A player decentralizes her decision-making

if she lets each of her deputies decide independently how to send the

part of her stock deputed to him from its origin to its destination. A

unilateral decentralization can be beneficial or deleterious for the de-

centralizing player herself, and it also has an influence on the other

players’ utility and the social welfare as well. This paper provides a

detailed analysis of these problems in the case where all the players

have the same binary choice.

In a network congestion game, i.e. routing game, each player has

a certain quantity of stock and a finite set of choices. A choice is a

directed, acyclic path from the player’s origin to her destination. A

player with a stock of infinitesimal weight is nonatomic. She has to

attribute her stock to only one choice. A player with a stock of strictly

positive weight is atomic. She (more rigorously, her stock) is splittable

if she can divide it into several parts and affect each part to a differ-

ent choice. She can also be non splittable, which is the case originally

studied in the seminal work of Rosenthal (1973) on congestion games.

This paper considers only the splittable case so that the word split-

table is often omitted. A path is composed of a series of arcs, and the

cost of a path is the sum of the costs of its component arcs. The cost

entailed to a user of an arc depends on the total weight of the stocks

on it as well as on the quantity of that user’s stock on it. A player

wishes to minimize her cost, which is the total cost to her stock. A

game with both nonatomic and atomic players is called a compos-
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ite game. An equilibrium in a composite congestion game is called

a composite equilibrium (CE for short) (Boulogne, Altman, Kameda, &

Pourtallier, 2002; Harker, 1988; Wan, 2012; Yang & Zhang, 2008). An

equilibrium does not necessarily minimize the social cost, i.e. the to-

tal cost to all the players.

In a composite congestion game, an atomic player of weight m

decentralizes if she is replaced by a composite set of players called

her deputies (i.e. n atomic players of weight α1, . . . , αn and a set of

nonatomic players of total weight α0, such that
∑n

i=0 αi = m) who

have the same choice set as her, and she collects the sum of her

deputies’ costs as her own.

Here is an example of advantageous decentralization. Two atomic

players both have a stock of weight 1
2 to send from O to D. Two par-

allel arcs link O to D, with per-unit cost function c1(t) = t + 10 and

c2(t) = 10t + 1 respectively. At the equilibrium, both players send

weight 2
11 on the first arc and 7

22 on the second one. The cost is 4.14 to

both players and the social cost is 8.28. If player 1 deputes her stock

to two atomic deputies both of weight 1
4 , then at the equilibrium of

the resulting congestion game, both deputies send weight 1
44 on the

first arc, while player 2 sends weight 1
4 there. The cost is 2.06 to both

deputies of player 1. Hence player 1 gains by decentralizing because

her current cost 4.12 is lower than 4.14. However, player 2’s cost is

now 4.59 and the social cost is 8.71, both higher than before.

Assuming that the arc cost functions are convex, strictly increasing

and continuously differentiable in congestion, this paper obtains the

following properties of unilateral decentralization in composite con-

gestion games with binary choice or, equivalently, in a two-terminal

two-parallel-arc composite routing game:

(i) For the atomic player who decentralizes unilaterally, all

her decentralization strategies are weakly dominated by
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single-atomic ones which depute her stock to at most one

atomic deputies in addition to nonatomic ones (Theorem 2.1).

A fortiori, she possesses an optimal decentralization strategy

(Theorem 3.1), which depends on her relative size among all

the players.

(ii) Unilateral decentralization gives an atomic player the same ad-

vantage as being the leader in a Stackelberg congestion game

(Theorem 3.2).

(iii) After the unilateral decentralization of an atomic player, the

social cost at the equilibrium increases or does not change, and

the cost to each of her opponents increases or does not change

(Theorem 4.1).

Although the above results are obtained in the specific settingf of

binary choice games, the goal of this paper is to introduce the no-

tion of strategic decentralization into composite congestion games,

to point out its significance, and to initiate a systematic study of its

properties.

The paper is organized as follows. Section 2 presents the model,

defines decentralization, and shows the special role of single-atomic

decentralization strategies. Section 3 proves the existence of an op-

timal unilateral decentralization strategy, and shows that unilateral

decentralization gives an atomic player the same advantage as being

the leader in a Stackelberg congestion game. Section 4 focuses on the

impact of unilateral decentralization on the social cost and the other

players’ cost. Section 5 concludes. The proofs and auxiliary results are

regrouped in Section 6.

1.1. Related literature

The “inverse” concept of decentralization – coalition forma-

tion or collusion between players – has been extensively studied.

Hayrapetyan, Tardos, and Wexler (2006) first define the price of collu-

sion (PoC) of a parallel network to be the ratio between the worst

equilibrium social cost after the nonatomic players form disjoint

coalitions and the worst equilibrium social cost without coalitions.

Bhaskar, Fleischer, Huang, Eisenbrand, and Shepherd (2010) extended

this study to series-parallel networks. (A series-parallel network can

be constructed by merging in series or in parallel several graphs of

parallel arcs.) This index is closely related to another important no-

tion: the price of anarchy (PoA), which is introduced by Koutsoupias,

Papadimitriou, Meinel, and Tison (1999) (and Papadimitriou, 2001)

as the ratio between the worst equilibrium social cost and the

minimal social cost in nonatomic games. Cominetti, Correa, and

Stier-Moses (2009) derive the first bounds on the PoA with atomic

players. For a specific network structure, one can deduce the PoC by

the PoA with atomic players and the PoA with nonatomic players. Fur-

ther results on the bound of the PoA with atomic players are obtained

in Harks (2011), Roughgarden and Schoppmann (2011) and Bhaskar

et al. (2010). Roughgarden and Tardos (2002) and Correa, Schulz, and

Stier-Moses (2008) provide fundamental results on the bound of the

PoA with nonatomic players. PoA in nonatomic games with asymmet-

ric costs or elastic demands is studied in Perakis (2007) and Chau and

Sim (2003), among others.

Beyond the coalitions formed by nonatomic players, Cominetti

et al. (2009), Altman et al. (2011), and Huang (2013) consider those

formed by atomic players. Their results can be interpreted as the im-

pact of certain kinds of collusion and hence, the “inverse” of it, de-

centralization, on the social cost. Wan (2012) studies the impact of

coalition formation on the nonatomic players’ cost outside the coali-

tion in parallel-link networks. In terms of the impact of coalition for-

mation on the cost of the coalition members themselves, Cominetti

et al. (2009), Altman et al. (2011) and Wan (2012) provide examples

in different contexts of disadvantageous coalition formation for the

members themselves. These are actually examples of advantageous

decentralization. Finally, for works on strategic decentralization, one
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Fig. 1. A binary choice congestion game.

can cite Sorin and Wan (2013) in integer-splitting congestion games,

and Baye, Crocker, and Ju (1996) in industrial organization (where

they call the strategic decentralization of a firm “divisionalization”).

Finally, let us point out that the above-mentioned coalition for-

mation is studied by the approach of comparative statics in a non-

cooperative game setting. It is different from the cooperative routing

games studied in Quant, Borm, and Reijnierse (2006) and Blocq and

Orda (2014).

2. Model and preliminary results

2.1. Binary choice composite congestion games

In Fig. 1, nodes O and D are linked by two parallel arcs. The per-

unit cost function of arc r is cr, for r = 1, 2. When the total weight of

stocks on arc r is t, the cost to each unit of them is cr(t). Both c1 and c2

are defined on �, a neighborhood of [0, M̄], with M̄ > 0. They satisfy

the following assumption throughout this paper.

Assumption 1. Both c1 and c2 are strictly increasing, convex and con-

tinuously differentiable on �, and non-negative on [0, M̄].

There is a continuum of nonatomic players of total weight T0,

and N atomic players of strictly positive weight T 1, T 2, . . . , T N respec-

tively, where N ∈ N. If there are no nonatomic (resp. no atomic) play-

ers, then T 0 = 0 (resp. N = 0). Let I = {0, 1, . . . , N}. The player profile

is denoted by T = (T i)i∈I, and their total weight is M = ∑
i∈I T i, with

M < M̄.

The profile of the nonatomic players’ strategies is described by

their flow x0 = (x0
1
, x0

2
), where x0

r is the total weight of the nonatomic

players on arc r. The strategy of atomic player i is specified by her

flow xi = (xi
1
, xi

2
), where xi

r is the weight that she sends by arc r.

Call x = (xi)i∈I the (system) flow. Denote respectively by Xi = {xi ∈
R

2+ | xi
1

+ xi
2

= T i} the space of feasible flows for the nonatomic play-

ers or an atomic player i, and by X = ∏
i∈I Xi the space of feasible

system flows. Let ξ = (ξr)r∈{1,2} be a vector function defined on X

by ξr(x) = ∑
i∈I xi

r, i.e. the aggregate weight on arc r. For i ∈ I, let

x−i = (x j) j∈I\{i}.

With flow x, the cost to a nonatomic player taking arc r is cr(ξ r(x)).

The cost to atomic player i is ui(x) = xi
1
c1(ξ1(x)) + xi

2
c2(ξ2(x)). The

social cost is CS(x) = ξ1(x)c1(ξ1(x)) + ξ2(x)c2(ξ2(x)).

Let this composite congestion game be denoted by �(T). Flow x ∈
X is a composite equilibrium (CE) of �(T) if (Harker, 1988):

(a) for r ∈ {1, 2}, if x0
r > 0, then cr(ξ r(x)) ≤ cs(ξ s(x)) for all s ∈ {1, 2};

and

(b) for i ∈ I�{0}, xi minimizes ui( ·, x−i) on Xi.

Like all composite congestion games taking place in a two-

terminal parallel-arc networks, game �(T) always admits a unique CE.

The reader is referred to Richman and Shimkin (2007) or Wan (2012)

for a proof. For the uniqueness of equilibria in congestion games with

different types of players and in more general networks, see, for ex-

ample, Meunier and Pradeau (2014) Milchtaich (2005) Richman and

Shimkin (2007) and (Bhaskar, Fleischer, Hoy, & Huang, 2015). Let the

nonatomic players’ common cost at the unique CE x be denoted by

u0(x).



Download English Version:

https://daneshyari.com/en/article/479321

Download Persian Version:

https://daneshyari.com/article/479321

Daneshyari.com

https://daneshyari.com/en/article/479321
https://daneshyari.com/article/479321
https://daneshyari.com

