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a b s t r a c t

A Projected-Gradient Underdetermined Newton-like algorithm will be introduced for finding a solution of a

Horizontal Nonlinear Complementarity Problem (HNCP) corresponding to a feasible solution of a Mathemati-

cal Programming Problem with Complementarity Constraints (MPCC). The algorithm employs a combination

of Interior-Point Newton-like and Projected-Gradient directions with a line-search procedure that guarantees

global convergence to a solution of HNCP or, at least, a stationary point of the natural merit function asso-

ciated to this problem. Fast local convergence will be established under reasonable assumptions. The new

algorithm can be applied to the computation of a feasible solution of MPCC with a target objective function

value. Computational experience on test problems from well-known sources will illustrate the efficiency of

the algorithm to find feasible solutions of MPCC in practice.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

A Mathematical Programming Problem with Complementarity

Constraints (MPCC) (Luo, Pang, & Ralph, 1996; Outrata, Kocvara, &

Zowe, 1998; Ralph, 2007) can be defined in the form

Minimize ϕ(x, y, w) subject to H(x, y, w) = 0

and min{x, w} = 0, (1)

where x, w ∈ Rn, y ∈Rm, while ϕ : R2n+m → R, and H : R2n+m → Rr

are continuously differentiable functions. The feasible set of MPCC

will be denoted by D and min{x, w} denotes a vector of components

min{xi, wi}, i = 1, . . . , n. For all i = 1, . . . , n, the variables xi, wi are

said to be complementary and satisfy:

xi � 0, wi � 0, xiwi = 0, i = 1, . . . , n. (2)
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MPCC has appeared frequently in optimization models and has

significant applications in different areas of science, engineering and

economics (Luo et al., 1996; Outrata et al., 1998; Ralph, 2007). Many

theoretical and application papers in Operations Research, as well as

survey papers on related topics (Bomze, 2012; Chen, 2000; Júdice,

2014; Kovacevic & Pflug, 2014; Lin & Fukushima, 2010), have been

devoted to this problem in recent years. For example, transport net-

work models were considered in García-Rodenas and Verastegui-

Rayo (2008), Walpen, Mancinelli and Lotito (2015), Wu, Yin and

Lawphongpanich (2011), bilevel optimization in Kovacevic and Pflug

(2014), variational inequality formulations in Toyasaki, Daniele and

Wakolbinger (2014), multiobjective problems with complementar-

ity constraints in Lin, Zhang and Liang (2013), Ye (2011), electricity

markets in Ehrenmann and Neuhoff (2009), Guo, Lin, Zhang and Zhu

(2015), Hu and Ralph (2007), Yao, Oren and Adler (2007), quadratic

programming with complementarity constraints in Ralph and Stein

(2011), optimality conditions in Pang (2007), order-value applications

in Andreani, Dunder and Martínez (2005), and oligopolistic equilib-

rium in Yao, Adler and Oren (2008), among others.

Clearly, MPCC can be seen as a Nonlinear Programming Prob-

lem where the n complementarity constraints min{xi, wi} = 0 are re-

placed with (2) or even with x�w = 0, x � 0, w � 0. Attempts for solv-

ing MPCC by means of nonlinear programming algorithms present

some difficulties, mainly because these algorithms may converge to

points from which there exist obvious first-order descent directions.

This issue is a consequence of the so-called double zeros or biactive

indices, i.e., feasible points satisfying at least a constraint xiwi = 0
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with both variables xi and wi equal to zero. These difficulties have

motivated much research on weak forms of stationarity (Ferris &

Pang, 1997; Hoheisel, Kanzow, & Schwartz, 2013; Luo et al., 1996;

Outrata et al., 1998; Ralph, 2007; Scheel & Scholtes, 2000) and sev-

eral algorithms have been designed to compute such weak station-

ary points (Anitescu, 2005; Anitescu, Tseng, & Wright, 2007; Ben-

son, Sen, Shanno, & Vanderbei, 2006; Fang, Leyffer, & Munson, 2012;

Fletcher & Leyffer, 2004; Fukushima, Luo, & Pang, 1998; Fukushima &

Tseng, 2002; Hoheisel et al., 2013; Hu & Ralph, 2004; Jiang & Ralph,

2003; Júdice, Sherali, Ribeiro, & Faustino, 2007, Leyffer, López-Calva, &

Nocedal, 2006; Luo et al., 1996; Outrata et al., 1998; Ralph, 2007).

In this paper, we will discuss how to compute a feasible solution

of the MPCC, that is, a solution of the following Horizontal (possibly

nonlinear) Complementarity Problem (HNCP) Gowda (1995):⎡⎢⎢⎣
H(x, y, w)

x1w1

...
xnwn

⎤⎥⎥⎦ = 0, x ≥ 0, w ≥ 0. (3)

We will assume that r ≤ m + n, so that the number of equations in

(3) is smaller than or equal to the number of unknowns. The case in

which r = m + n has been studied in Andreani, Júdice, Martínez and

Patrício (2011b). The case of H affine has been thoroughly discussed

in the literature (see for instance Júdice (2014) for a recent survey).

The HNCP is NP-hard in this case Murty (1988) but there are many

MPCCs where finding a single feasible solution can be considered as

an easy task Júdice (2014).

The problem of finding a feasible point of MPCC at which the ob-

jective function achieves a target value ct is naturally formulated as

follows:

ϕ(x, y, w) � ct , H(x, y, w) = 0, x � 0, w � 0 and x�w = 0. (4)

Note that the problem (4) can be written as a standard HNCP

adding two auxiliary variables v1 and v2, as follows:

ϕ(x, y, w) + v1 = ct , H(x, y, w) = 0, v1v2 = 0, xiwi = 0,

i = 1, . . . , n, v1 ≥ 0, v2 ≥ 0, x ≥ 0, and w ≥ 0.

(5)

In this paper we will extend the algorithm introduced in Andreani

et al. (2011b), which deals with the case r = n + m, for the un-

derdetermined HNCP (3) where r may be smaller than n + m. The

Projected-Gradient Underdetermined Newton-like algorithm (PGUN)

combines fast interior-point iterations with projected-gradient steps.

A line-search procedure is employed guaranteeing sufficiently reduc-

tion of the natural merit function Andreani, Júdice, Martínez and

Patrício (2011a) associated to HNCP. This will allow us to establish

global convergence of the PGUN algorithm to a solution of HNCP or

to a stationary point of the merit function with a positive function

value. In this case the algorithm terminates unsuccessfully. Fast local

convergence will be established under reasonable hypotheses.

Computational experience with PGUN for solving the HNCP as-

sociated to feasible solutions of some MPCC test problems from a

well-known collection Leyffer (2000) will show that, for many in-

stances, projected-gradient iterations are seldom used and the algo-

rithm is able to converge very fast to a solution of HNCP. For other in-

stances, PGUN converges slowly using projected-gradient iterations

to a stationary point of the merit function that seems not to be a so-

lution of the HNCP. A practical criterion will be introduced to stop

prematurely PGUN and avoid many projected-gradient iterations. As

the natural merit function is nonconvex, the choice of the starting

point is very important for the success of PGUN. Here we will sug-

gest to restart the PGUN algorithm with a new initial point whenever

the criterion mentioned before forced the algorithm to stop prema-

turely. Numerical results with an implementation of PGUN incorpo-

rating these two practical procedures (premature stopping criterion

and restarting) show that the method is in general efficient to solve

the HNCP and seems to perform better than a Projected Levenberg-

Marquardt algorithm Kanzow, Yamashita and Fukushima (2005). We

have also tested PGUN for solving (5) associated to a target ct equal

to the best known objective function value of some MPCCs from the

collection mentioned before. As discussed in Fernandes, Friedlander,

Guedes and Júdice (2001), the introduction of the target constraint

to HNCP makes this problem more difficult to tackle and PGUN has

more difficulties to solve the HNCP in this case. Despite this, PGUN

has been able to provide a target feasible solution of MPCC for the

large majority of tested instances.

The organization of this paper is as follows. The properties of the

merit function for the HNCP are studied in Section 2. The algorithm

PGUN will be described and its global convergence will be analyzed

in Section 3. Section 4 will be devoted to the local convergence of

the PGUN algorithm. Computational experience with the PGUN al-

gorithm will be reported in Section 5 and some conclusions will be

presented in the last section of the paper.

Notation: The 2-norm of vectors and matrices will be denoted by ‖·‖.

If there is no risk of confusion we denote (x, y, w) = (x�, y�, w�)�, as

it has been already done in Section 1. We adopt the usual convention

of denoting X the diagonal matrix whose entries are the elements of

x ∈ Rn. The Moore–Penrose pseudoinverse of the matrix A will be

denoted by A†. The Jacobian matrix of �: Rn →Rm, with components

ϕ1, . . . , ϕm, will be defined by

�′(z) =

⎡⎢⎢⎢⎢⎣
∂ϕ1

∂z1

(z) . . .
∂ϕ1

∂zn
(z)

...
. . .

...

∂ϕm

∂z1

(z) . . .
∂ϕm

∂zn
(z)

⎤⎥⎥⎥⎥⎦.

We define e = (1, . . . , 1)� and

� = {(x, y, w) : x � 0, w � 0}. (6)

The Interior of this set will be denoted by Int(�).

2. Stationary points of the sum of squares

The HNCP (3) may be expressed in the form

F(x, y, w) = 0, x ≥ 0, w ≥ 0, (7)

where F : Rn+m+n −→ Rr+n is given by

F(x, y, w) =

⎡⎢⎢⎢⎣
H(x, y, w)

x1w1

...

xnwn

⎤⎥⎥⎥⎦, (8)

and H : Rn+m+n → Rr has continuous first derivatives.

We define the natural merit function:

f (x, y, w) = ‖F(x, y, w)‖2 (9)

and we consider the problem

Minimize f (x, y, w) subject to (x, y, w) ∈ �, (10)

where � is defined in (6). From now on we will denote z = (x, y, w).

It is well known that, if z∗ is an unconstrained stationary point

of “Minimize ‖�(z)‖2” and the residual �(z∗) is not null, then the

rows of the �′(z∗) are linearly dependent. In general, this property is

not true in the presence of bound constraints. In what follows, gen-

eralizing a result proved in Andreani et al. (2011a), we prove that the

non-full-rank property also holds in the case of problem (10) with the

definitions (8) and (9).

Theorem 2.1. Suppose that z = (x, y, w) ∈ � is a stationary point of

(10). Then,
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