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a b s t r a c t

In stochastic optimal control, one deals with sequential decision-making under uncertainty; with dynamic

risk measures, one assesses stochastic processes (costs) as time goes on and information accumulates. Under

the same vocable of time-consistency (or dynamic-consistency), both theories coin two different notions: the

latter is consistency between successive evaluations of a stochastic processes by a dynamic risk measure

(a form of monotonicity); the former is consistency between solutions to intertemporal stochastic optimiza-

tion problems. Interestingly, both notions meet in their use of dynamic programming, or nested, equations.

We provide a theoretical framework that offers (i) basic ingredients to jointly define dynamic risk measures

and corresponding intertemporal stochastic optimization problems (ii) common sets of assumptions that lead

to time-consistency for both. We highlight the role of time and risk preferences — materialized in one-step

aggregators — in time-consistency. Depending on how one moves from one-step time and risk preferences

to intertemporal time and risk preferences, and depending on their compatibility (commutation), one will

or will not observe time-consistency. We also shed light on the relevance of information structure by giving

an explicit role to a state control dynamical system, with a state that parameterizes risk measures and is the

input to optimal policies.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

You come across time-consistency in two different mathematical

fields. You are time-consistent if, as time goes on and information ac-

cumulates, you do not question the original assessment of stochastic

processes (dynamic risk measures) or planning of policies (stochastic

optimal control).

We propose a general mechanism to build up time-consistent dy-

namic risk measures, that serve as criteria for optimal control prob-

lems under uncertainty, which henceforth inherit time-consistency.

We show how in a few words.

Consider two sets T1 and T2, representing sets of time pe-

riods (T1 = {1, 2, 3}, T2 = {4, 5} for instance). Consider two sets

W1 and W2, representing possible values of uncertainties. For any

set S, denote by L(S) the set of functions S → R ∪ {+∞}, and by

GS : L(S) → R ∪ {+∞} a mapping. You can assess any function A :

T1 × T2 × W1 × W2 → R ∪ {+∞},
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• either by block-aggregation: start by aggregating by time, yield-

ing GT2
GT1

: W1 × W2 → R ∪ {+∞}, then by uncertainty, yielding

GW2
GW1

GT2
GT1

A ∈ R ∪ {+∞},
• or by nested-aggregation, yielding GW2

GT2
GW1

GT1
A ∈ R ∪ {+∞}.

We will show that nested-aggregation produces both time-

consistent dynamic risk measures and optimal control problems, and

that so does block-aggregation when a commutation property holds

true. For example, sum and integral are commuting operators and a

block-aggregation is equivalent to a nested-aggregation as shown in

the following equality∫∫∫
X×Y×Z

[c1(x)+ c2(x, y)+ c3(x, y, z)]dxdydz

=
∫

X

[
c1(x)+

∫
Y

[
c2(x, y)+

∫
Z

c3(x, y, z)dx

]
dy

]
dz.

Now, let us be more specific.

In stochastic optimal control, one deals with sequential decision-

making under uncertainty; with dynamic risk measures, one assesses

stochastic processes (costs) as time goes on and information accumu-

lates. We discuss the definition of time-consistency in each setting

one after the other (see also Rudloff, Street, & Valladão, 2014 for an-

other analysis of links between both notion).
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In optimal control problems, we consider a dynamical process

that can be influenced by exogenous noises as well as decisions made

at every time step. The decision-maker (DM) wants to optimize a

criterion (for instance, minimize a net present value) over a given

time horizon. As time goes on and the system evolves, the DM makes

observations. Naturally, it is generally more profitable for the DM to

adapt his decisions to the observations. He is hence looking for policies

(strategies, decision rules) rather than simple decisions: a policy is

a function that maps every possible history of the observations to

corresponding decisions.

The notion of “consistent course of action” (see Peleg & Yaari,

1973) is well-known in the field of economics, with the seminal work

of (Strotz, 1955–1956): an individual having planned his consump-

tion trajectory is consistent if, reevaluating his plans later on, he does

not deviate from the originally chosen plan. This idea of consistency

as “sticking to one’s plan” may be extended to the uncertain case

where plans are replaced by decision rules (“Do thus-and-thus if you

find yourself in this portion of state space with this amount of time

left”, Richard Bellman cited in Dreyfus, 2002): Hammond (1976) ad-

dresses “consistency” and “coherent dynamic choice”, Kreps and Por-

teus (1978) refer to “temporal consistency”.

In this context, we loosely state the property of time-consistency

in optimal control problems as follows (Carpentier, Chancelier,

Cohen, De Lara, & Girardeau, 2012). The decision maker formulates

an optimization problem at time t0 that yields a sequence (planning)

of optimal decision rules for t0 and for the following increasing time

steps t1, . . . , tN = T. Then, at the next time step t1, he formulates a

new problem starting at t1, that yields a new sequence of optimal

decision rules from time steps t1 to T. Suppose the process continues

until time T is reached. The sequence of optimization problems is said

to be time-consistent if the optimal strategies obtained when solv-

ing the original problem at time t0 remain optimal for all subsequent

problems. In other words, time consistency means that strategies ob-

tained by solving the problem at the very first stage do not have to be

questioned later on.

Now, we turn to dynamic risk measures. At time t0, you assess,

by means of a risk measure ρt0,T , the “risk” of a stochastic process

{At}tN
t=t0

, that represents a stream of costs indexed by the increasing

time steps t0, t1, . . . , tN = T. Then, at the next time step t1, you assess

the risk of the tail {At}tN
t=t1

of the stochastic process knowing the infor-

mation obtained and materialized by a σ -field Ft1
. For this, you use a

conditional risk measure ρt1,T with values in Ft1
-measurable random

variables. Suppose the process continues until time T is reached. The

sequence {ρt,T}tN
t=t0

of conditional risk measures is called a dynamic

risk measure.

Dynamic or time-consistency has been introduced in the context of

risk measures (see Artzner, Delbaen, Eber, Heath, & Ku, 2007; Cherid-

ito, Delbaen, & Kupper, 2006; Cheridito & Kupper, 2011; Detlefsen &

Scandolo, 2005; Riedel, 2004 for definitions and properties of coher-

ent and consistent dynamic risk measures). The dynamic risk measure

{ρt,T}tN
t=t0

is said to be time-consistent when the following property

holds. Suppose that two streams of costs, {A
t
}tN

t=t0
and {At}tN

t=t0
, are

such that they coincide from time ti up to time tj > ti and that,

from that last time tj, the risk of the tail stream {A
t
}tN

t=tj
is more

than that of {At}tN
t=tj

(i.e. ρtj,T
({A

t
}tN

t=tj
) ≥ ρtj,T

({At}tN
t=tj

)). Then, the

whole stream {A
t
}tN

t=ti
has higher risk than {At}tN

t=ti
(i.e. ρti,T

({A
t
}tN

t=ti
) ≥

ρti,T
({At}tN

t=ti
)).

We observe that both notions of time-consistency look quite dif-

ferent: the latter is consistency between successive risk assessments

of a stochastic process by a dynamic risk measure (a form of mono-

tonicity); the former is consistency between solutions to intertempo-

ral stochastic optimization problems. We now stress the role of in-

formation accumulation in both notions of time-consistency, because

it highlights how the two notions can be connected. For dynamic

risk measures, the flow of information is materialized by a filtration

{Ft}tN
t=t1

. In stochastic optimal control, an amount of information more

modest than the past of exogenous noises is often sufficient to make

an optimal decision. In the seminal work of (Bellman, 1957), the mini-

mal information necessary to make optimal decisions is captured in a

state variable (see Whittle, 1982 for a more formal definition). More-

over, the famous Bellman or Dynamic Programming Equation (DPE)

provides a theoretical way to find optimal strategies (see Bertsekas,

2000 for a broad overview on Dynamic Programming (DP)).

Interestingly, time-consistency in optimal control problems and

time-consistency for dynamic risk measures meet in their use of DPEs.

On the one hand, in optimal control problems, it is well known that

the existence of a DPE with state x for a sequence of optimization

problems implies time-consistency when solutions are looked after

as feedback policies that are functions of the state x. On the other

hand, proving time-consistency for a dynamic risk measure appears

rather easy when the corresponding conditional risk measures can

be expressed by a nested formulation. In both contexts, such nested

formulations are possible only for proper information structures. In

optimal control problems, a sequence of optimization problems may

be consistent for some information structure while inconsistent for a

different one (see Carpentier et al., 2012). For dynamic risk measures,

time-consistency appears to be strongly dependent on the underly-

ing information structure (filtration or scenario tree). Moreover, in

both contexts, nested formulations and the existence of a DPE are

established under various forms of decomposability of operators that

display monotonicity and commutation properties.

Our objective is to provide a theoretical framework that offers

(i) basic ingredients to jointly define dynamic risk measures and cor-

responding intertemporal optimization problems under uncertainty

(ii) common sets of assumptions that lead to time-consistency for

both. We wish to highlight the role of time and risk preferences, ma-

terialized in one-step aggregators, in time-consistency. Depending on

how you move from one-step time and risk preferences to intertem-

poral time and risk preferences, and depending on their compatibil-

ity (commutation), you will or will not observe time-consistency. We

also shed light on the relevance of information structure by giving an

explicit role to a dynamical system with state x.

The paper is organized as follows. In Section 2, we define dy-

namic uncertainty criteria (“cousins” of dynamic risk measures) and

their time-consistency. Then, we introduce the notions of time and

uncertainty-aggregators, define their composition, and show two

ways to craft a dynamic uncertainty criterion from one-step aggrega-

tors: in the nested-aggregation case, we prove time-consistency; in

the block-aggregation case, we have to add a commutation property

for this. In Section 3, we introduce the basic material to formulate in-

tertemporal optimization problems under uncertainty from dynamic

uncertainty criteria, and define their time-consistency. In the nested-

aggregation case, we prove time-consistency by displaying a DPE; in

the block-aggregation case, we have to add a commutation property

for this. We end with applications in Section 4, before concluding.

Notations

We fix notations used throughout the paper:

• �a, b� is the set of integers between a and b (included);
• F

(
E, F

)
is the set of functions mapping E into F;

• {ut}T
0 is the sequence {u0, . . . , uT};

• R̄ = R ∪ {+∞};
• W[0:s] is the Cartesian product W0 × · · · × Ws;
• G is used to refer to an aggregator with respect to uncertainty;
• φ is used to refer to an aggregator with respect to time.

Furthermore, the superscript notation indicates that the domain

of the mapping G
[t:s] is F(W[t:s]; R̄) (not to be confused with G[t:s] =

{Gr}s
r=t).
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