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a b s t r a c t

We discuss the incorporation of risk measures into multistage stochastic programs. While much attention

has been recently devoted in the literature to this type of model, it appears that there is no consensus on the

best way to accomplish that goal. In this paper, we discuss pros and cons of some of the existing approaches.

A key notion that must be considered in the analysis is that of consistency, which roughly speaking means

that decisions made today should agree with the planning made yesterday for the scenario that actually

occurred. Several definitions of consistency have been proposed in the literature, with various levels of rigor;

we provide our own definition and give conditions for a multi-period risk measure to be consistent. A popular

way to ensure consistency is to nest the one-step risk measures calculated in each stage, but such an approach

has drawbacks from the algorithmic viewpoint. We discuss a class of risk measures—which we call expected

conditional risk measures—that address those shortcomings. We illustrate the ideas set forth in the paper

with numerical results for a pension fund problem in which a company acts as the sponsor of the fund and

the participants’ plan is defined-benefit.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

The evolution and widespread use of stochastic programming is

closely related to the increasing computing power made available

since the foundation of the field. The important class of two-stage

stochastic programs found immediate use in applications since its

general framework of first- and second-stage decisions is suitable

for a number of real-world problems, see for instance Wallace and

Ziemba (2005). Later, the attention turned to multistage stochastic

programs (MSSPs), which are a natural extension of two-stage mod-

els. In those problems the sequence of events starts with a decision,

followed by a realization of a random vector, and then a decision is

made knowing the outcome of the random vector, a new realization

occurs, and so on. Randomness is often described by a continuous

stochastic process or by a discrete process with a very high num-

ber of possible outcomes. A common approach is to build a scenario

tree, which is a discrete representation that in some sense is close

to the original process according to some distance. The generation

of scenario trees has received a great deal of attention in the liter-
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ature: see, for instance, Pflug (2001), Høyland and Wallace (2001),

Dupačová, Gröwe-Kuska, and Römisch (2003), Heitsch and Römisch

(2009), Pflug and Pichler (2011), Pflug and Pichler (2012), Mehrotra

and Papp (2013). Scenario trees are crucial for numerical solution of

the problem, as algorithms used in practice to solve the problem are

typically rooted in some decomposition principles such as the Nested

Decomposition (Donohue & Birge, 2006) or the Stochastic Dual Dy-

namic Programming scheme (Pereira & Pinto, 1991). MSSPs have been

used in a number of areas, including finance, revenue management,

energy planning, and natural resources management, among others.

The classical formulation of stochastic programs (in two or more

stages) optimizes the expected value of an objective function that de-

pends on the decision variables as well as on the random variables

that represent the uncertainty in the problem. Such a formulation

assumes that the decision maker is risk-neutral, i.e., he or she will

not mind large losses in some scenarios as long as those are offset

by large gains in other scenarios. While such an approach is useful in

a number of applications, it does not reflect the situation where the

decision is very concerned about large losses—in other words, such a

decision maker is risk-averse. It is natural then to consider risk-averse

formulation of stochastic programs.

In the case of two-stage models, the structure of a first-stage de-

terministic cost plus a random recourse cost in the second stage

makes the extension to the risk-averse case immediate from a

modeling perspective, in the sense that the natural choice is to
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replace the expectation of the second stage cost with some other risk

measure; see, for instance, Schultz and Tiedemann (2006), Fábián

(2008), Shapiro, Dentcheva, and Ruszczyński (2009) and Miller and

Ruszczyński (2011). The difficulty associated with the risk-averse

model depends on the choice of the risk measure. Ahmed (2006)

shows that if the risk measure is the variance, then the resulting prob-

lem is NP-hard. Furthermore, monotonicity in the second stage would

be lost, and the cost units of first and second stage would be different

unless the standard deviation was used, but the problem would likely

become intractable in this case. Rockafellar and Uryasev (2000) show

that if the Conditional Value-at-Risk is chosen, the sampled version

of the continuous problem can be approximated by a linear program-

ming problem. Noyan (2012) proposes two decomposition algorithms

to efficiently solve a disaster management problem with the Condi-

tional Value-at-Risk as the risk measure.

For multistage stochastic programming the picture is quite differ-

ent and several questions arise. When sequential decision is involved,

there is no natural or obvious way of measuring risk. Should risk be

measured at every stage separately? Should it be applied to the sev-

eral scenario paths in the tree? Or should risk be measured in a nested

way, in the spirit of dynamic programming? What if only the risk at

the end of the time horizon is relevant and we do not want to measure

risk at the other stages? The difficulty in extending risk measures to

the multistage setting has been discussed in several papers and it can

be argued that the differences among the approaches are far more

significant than the two-stage case.

A number of recent papers have considered the importance

of measuring risk in MSSPs (see, for instance, Collado, Papp, &

Ruszczyński, 2012; Eichhorn & Römisch, 2005; Guigues & Sagas-

tizábal, 2013; Kozmík & Morton, 2015; Pagnoncelli & Piazza, 2012;

Pflug & Römisch, 2007; Pflug & Pichler, 2014b; Philpott & de Matos,

2012; Philpott, de Matos, & Finardi, 2013; Shapiro, 2012a; Shapiro,

Tekaya, Soares, & da Costa, 2013). Several of these papers focus on

how to adapt existing algorithms from the risk-neutral case to the

risk-averse case, often with the Conditional Value-at-Risk as the risk

measure. One of the goals of our paper is to address some of the pop-

ular ways to measure risk and discuss their advantages and draw-

backs. In addition, we revisit and extend a class of multi-period risk

measures proposed by Pflug and Ruszczyński (2005) (see also Pflug,

2006 for a more extensive discussion), which we call expected con-

ditional risk measures (ECRMs), and discuss how the resulting prob-

lem can be efficiently solved. ECRMs combine two attractive fea-

tures: on the one hand, ECRMs can be represented in a nested form,

a feature that is desirable and the focus of much of the recent liter-

ature, as we shall see later; on the other hand, we show that when

ECRMs are applied with the Conditional Value-at-Risk (CVaR) as the

underlying risk measure, the resulting MSSP can be represented by

a simpler risk-neutral MSSP with additional variables, much in the

spirit of the polyhedral risk measures introduced by Eichhorn and

Römisch (2005).

As it has been observed in the literature, one very important issue

that arises when modeling risk-averse MSSPs is that of time consis-

tency. Time consistency in MSSPs has been highlighted by several au-

thors in recent years as a desirable property a problem should have.

Informally, time consistency means that if you solve an MSSP to-

day and find solutions for each node of a tree, you should find the

same solutions if you re-solve the problem tomorrow given what

was observed and decided today. The definitions in the literature

differ mainly by their focus: the works of Ruszczyński (2010) and

Kovacevic and Pflug (2014) deal with sequences of random vari-

ables, while Detlefsen and Scandolo (2005), Cheridito, Delbaen, and

Kupper (2006), and Bion-Nadal (2008), define time consistency for

continuous-time dynamic models. The definitions in Shapiro (2009),

Carpentier, Chancelier, Cohen, De Lara, and Girardeau (2012), Rudloff,

Street, and Valladão (2014) and De Lara and Leclère (2014) are cen-

tered on optimization and on the stability of decision variables at

every stage. Xin, Goldberg, and Shapiro (2013) propose definitions of

time-consistency of policies in the context of distributionally robust

MSSPs, whereas Pflug and Pichler (2014a) propose a related notion

of time-consistent decisions. We propose a new definition of consis-

tency, closer to the optimization-oriented papers. Our definition is

suitable for MSSPs that can be represented via scenario trees. Using

a simple three-stage inventory problem we show that several natural

ways of measuring risk lead to inconsistent formulations, according

to our definition. We also show the class of ECRMs we study in this

paper is time-consistent.

We illustrate the applicability of ECRMs by using it in a pension

fund problem proposed by Haneveld, Streutker, and Van Der Vlerk

(2010). This numerical example illustrates two important aspects of

ECRMs: first, the simplicity of implementation when the CVaR is used

as an ingredient for the ECRM—indeed, we use standard software for

risk-neutral multistage programs available in the literature to solve

the corresponding risk-averse problem. The second important aspect

is the flexibility allowed by the model to represent the change in the

degree of risk aversion over time; for example, the decision maker

may be more risk-averse about the earlier stages and less risk-averse

about the stages farther in the future. We also use the numerical ex-

ample to propose a (to the best of our knowledge) novel way to com-

pare optimal solutions of MSSPs. The majority of applications only

analyzes the first-stage solution since in most cases a rolling-horizon

procedure will be implemented in practice and the solutions of other

stages will not be implemented. We show in our pension fund exam-

ple that the solutions of subsequent stages carry important informa-

tion concerning the quality and robustness of the first-stage solution.

By using first- and second-order dominance we show that despite

having an attractive first-stage allocation, some solutions exhibit a

poor behavior in subsequent stages, such as having a very high prob-

ability of needing extra money injection in the fund.

The rest of the paper is organized as follows. Section 2 defines our

notion of consistency. In Section 3 we present an inventory problem

that illustrates our notion of consistency and discuss several mod-

eling paradigms for risk-averse MSSPs. We prove some results that

characterize consistency according to our definition in Section 4. In

Section 5 we introduce the notion of ECRMs and study in detail their

properties, including consistency and the equivalent risk-neutral for-

mulation of the case with CVaR. The pension fund example that illus-

trates our approach is presented in Section 6, while Section 7 presents

some concluding remarks.

2. Consistency

We start by defining precisely the notation and the class of prob-

lems we want to study. Consider a probability space (�, F , P), and

let F1 ⊂ F2 ⊂ . . .FT be sub sigma-algebras of F such that each Ft cor-

responds to the information available up to (and including) stage t,

with F1 = {∅,�} and FT = F . Let Zt denote a space of Ft -measurable

functions from � to R, and let Z := Z1 × · · · × ZT . We define a multi-

period risk function F as a mapping from Z to R. For example, we may

have, for Z ∈ Z,

F(Z) = F1(Z1) + · · · + FT (ZT ), (2.1)

where each Ft is a one-period risk function, i.e., a mapping from Zt

to R. Note that some assumptions may be required for the existence

of the mapping F. For example, consider the additive case (2.1) with

each Fi being the expectation operator; then, each expectation must

exist and be finite, which can be ensured for example when � is fi-

nite. Throughout this paper we assume that F is well-defined and

finite.

Consider now the space DT of distributions of T-dimensional ran-

dom vectors in Z . That is, each element G ∈ DT —which is a mapping

from BT to [0, 1], where BT is the Borel sigma-algebra in R
T —can be

written as the distribution function GZ of some Z = (Z1, . . . , ZT ) ∈ Z,
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