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a b s t r a c t

A great deal of recent literature discusses the major anomalies that have appeared in the interest rate market

following the credit crunch in August 2007. There were major consequences with regard to the development

of spreads between quantities that had remained the same until then. In particular, we consider the spread

that opened up between the Libor rate and the OIS rate, and the consequent empirical evidence that FRA

rates can no longer be replicated using Libor spot rates due to the presence of a Basis spread between floating

legs of different tenors. We develop a credit risk model for pricing Basis Swaps in a multi-curve setup. The

Libor rate is considered here as a risky rate, subject to the credit risk of a generic counterparty whose credit

quality is refreshed at each fixing date. A defaultable HJM methodology is used to model the term structure

of the credit spread, defined through the implied default intensity of the contributing banks of the Libor

corresponding to a chosen tenor. A forward credit spread volatility function depending on the entire credit

spread term structure is assumed. In this context, we implement the model and obtain the price of Basis

Swaps using a numerical scheme based on the Euler–Maruyama stochastic integral approximation and the

Monte Carlo method.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

After the credit crunch of summer 2007 the interest rate market

changed due to the appearance of Basis spreads between rates with

different tenors, to the loss of the possibility of replicating swap with

spot rates, and to the fact that the interest rate curve underlying of in-

terest rate derivatives does not coincide with the discounting interest

rate curve anymore. In Morini (2009) and Morini (2011) the author

gives a deep and detailed analysis on the causes and consequences of

the interest rate market changes. The author designs a new approach

for modelling collateralized derivatives, namely derivatives that are

not affected by both the risk of default and liquidity because they

are traded with a provision for liquidity. Morini (2009) shows that

the gap between the Forward Rate Agreement, FRA, rates and their

standard spot Libor replication can be explained by the existence

of a premium associated to tenor, expressed by quoted Basis Swap

spreads. Among the major anomalies that arose in the interest rate

market there is the discrepancy between Libor rates and Eonia OIS

rates, Overnight Indexed Swaps rates, that leads to a new definition

of the Libor rate as a risky interest rate. In fact, Eonia OIS rates
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according to different maturities give the risk-free term struc-

ture, because the OIS rate with a generic maturity T is seen as an

average of the market expectation of the overnight futures rates

until T, and those rates are considered free of credit risk. On the

contrary, the Libor rate is now a risky rate whose credit risk is

not referred to a specific counterparty, but a generic one whose

credit quality is refreshed at each fixing date. Thus, the level of

Libor is provided by the fixings and assuming homogeneity and

stability of Libor counterparties (banks). The fixings are trimmed

averages of contributions from a panel of the most relevant banks

in the market with the highest credit quality. Among papers which

propose new approaches and methodologies for building models

consistent with the new interest rate market situation, we recall

Mercurio (2009), Ametrano and Bianchetti (2009), Henrard (2009),

Pallavicini and Tarenghi (2010), Crépey, Grbac and Nguyen (2011),

Eberlein and Grbac (2013), Pallavicini and Brigo (2013), and Crépey,

Grbac, Ngor, and Skovmand (2014). Mercurio (2009) extends the

basic lognormal LMM (Brace, Gatarek, & Musiela, 1997; Miltersen,

Sandmann, & Sondermann, 1997), by adding stochastic volatility,

in order to obtain the dynamics of FRA rates and to price inter-

est rate derivatives. Ametrano and Bianchetti (2009) illustrate a

methodology for bootstrapping multiple interest rate yield curves

from non-homogeneous plain vanilla instruments quoted on the

market, obtaining that each curve is homogenous in the tenor of the
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underlying rate. Henrard (2009) and Pallavicini and Tarenghi (2010)

propose two different frameworks to construct yield curves consis-

tent with a multi-curve situation and derive the price of interest rate

derivatives. Crépey et al. (2011) apply a defaultable HJM approach

to model the term structure of multiple interest rate curves. They

choose a class of non-negative multidimensional Lévy processes as

driving processes combined with deterministic volatility structures,

in order to obtain a flexible and efficient interest rate derivative pric-

ing model. Eberlein and Grbac (2013) model credit risk within the

LMM. They propose a rating Lévy Libor model that is arbitrage-free

for defaultable forward Libor rates related to risky bonds with credit

ratings. They use time-inhomogeneous Lévy processes as driving

processes. Recently, Pallavicini and Brigo (2013) model multiple

LIBOR and OIS based interest rate curves consistently, based only

on market observables and by consistently including credit, col-

lateral and funding effects. They develop a framework for pricing

collateralized interest-rate derivatives. Crépey et al. (2014) develop a

parsimonious Markovian multiple-curve model for evaluating inter-

est rate derivatives in the post-crisis setup and they use BSDE-based

numerical computations for obtaining counterparty risk and funding

adjustments.

Although in this paper we develop a model for pricing Basis Swaps

according to the mathematical representation of interest rate mar-

ket theorized by Morini (2009) and Morini (2011), we will model

the term structure of multiple interest rates in a defaultable Heath–

Jorrow–Morton framework, henceforth HJM, (see Heath, Jarrow, &

Morton, 1992, Bielecki & Rutkowski, 2000, and Brigo & Mercurio,

2006).

In Section 2 we describe the general setting of the model, namely

assumptions about the probability space and the dynamics of the de-

faultable instantaneous forward rate. In Section 3 we derive a de-

faultable representation of the Libor rate and we develop a model

for pricing collateralized derivatives, and in particular Basis Swaps.

Section 4 deals with the specification of defaultable dynamics in a

multi-curve HJM framework in compliance with no-arbitrage condi-

tions. In Section 5 we illustrate the numerical algorithm used to sim-

ulate the Basis Swap model and we show and analyze the numerical

results. Finally, Section 6 concludes.

2. The general setting

In this section we present the general setting on which the credit

model for pricing Basis Swap is built.

We consider the instantaneous yield curve implicitly defined by

the Libor rate. We model the dynamics of defaultable instantaneous

forward interest rates within the HJM framework, but we extend it to

consider Libor rates, that is the underlying of all interest rate deriva-

tives, refer to different counterparties at different fixing times.

We assume a filtered probability space (�,F , (Ft)t≥0, P) exists, T

is assumed to be the finite time horizon and F = F
T

is the σ -algebra

at time T . All statements and definitions are understood to be valid

until the time horizon T .

We denote by Cz the counterparty of a lending contract at time

z, that defaults at time τ z > z. The time τ z is a stopping time,

τ z : � → [0, +∞[, defined as the first jump time of the Cox process

N(t) = ∑∞
i=1 1{τ z

i
≤t}, that is

τ z = in f {t ≥ 0|N(t) > 0}.
When we consider N counterparties C1, C2, … , CN, N ∈ N, the fil-

tration F = (Ft)t≥0 is divided into two subfiltrations F = H ∨ Fτ ,

which is Ft = Ht ∨ Fτ
t ∀t ≥ 0, and Fτ = Fτ1 ∨ Fτ2 ∨ . . . ∨ FτN

. The

subfiltration H = (Ht)t≥0 = (σ (Xs : 0 ≤ s ≤ t))t≥0 is generated by the

background driving process X, that is an R
d-valued right continu-

ous stochastic process X = {Xt : 0 ≤ t ≤ T} with left limit. It repre-

sents the flow of all background information except default itself

and H = H
T

is the sub-σ -algebra at time T . The generic subfiltra-

tion Fτ z = (Fτ z

t )t≥0 = (σ (1{τ z≤s} : 0 ≤ s ≤ t))t≥0 is generated by the

right-continuous default indicator process 1{τ z≤t}. Since obviously

Fτ z

t ⊂ Ft , ∀t ≥ 0, τ z is a stopping time with respect to F, but it is not

necessarily a stopping time with respect to H. The right-continuous

stochastic process λz(t) is the intensity of the Cox process. It is in-

dependent of N(t), it is assumed to be adapted to H and follows the

diffusion process

dλz(t) = μz
λ(t)dt + σ z

λ(t)dW z
λ(t),

where μz
λ
(t) is the drift of the intensity process, σ z

λ
(t) is the volatility

of the intensity process and W z
λ

is a standard Wiener process under

the objective probability measure P. Processes W z
λ
, z = 1, . . . , N, are N

independent Wiener processes.

The defaultable instantaneous forward rate, fz(t, T), 0 ≤ t ≤ T ≤ T ,

is modeled as the sum of the risk-free instantaneous forward rate, f(t,

T), and the instantaneous forward credit spread λz(t, T), so that we

have

f z(t, T) := f (t, T) + λz(t, T). (1)

Thus the forward credit spread is obtained as difference between the

two forward interest rates. If t = T, then we obtain the defaultable

spot rate f z(t) := f z(t, t) = r(t) + λz(t), where r(t) := f(t, t) repre-

sents the risk-free spot rate and λz(t) := λz(t, t) is the spot credit

spread. The credit spread is referred to as the Cox intensity across

maturities.

In the HJM framework the term structure of risk-free interest rates

is the stochastic integral equation for the forward rate

f (t, T) = f (0, T) +
∫ t

0

μ(v, T, ·)dv +
∫ t

0

σ f (v, T, ·)dW(v), (2)

where μ(t, T, ·) is the instantaneous forward rate drift function, σ f(t,

T, ·) is the instantaneous forward rate volatility function and W(t) is

a standard Wiener process with respect to the objective probability

measure P. The third argument in the brackets (t, T, ·) indicates the

possible dependence of the forward rate on other path dependent

quantities, such as the spot rate or the forward rate itself.

Whereas the dynamics for λz(t, T) is

λz(t, T) = λz(0, T) +
∫ t

0

μz
λ(s, T, ·)ds +

∫ t

0

σ z
λ(s, T, ·)dW z

λ(s). (3)

Again, the third argument in the brackets (t, T, ·) indicates the possible

dependence of the forward rate on other path dependent quantities.

Now we apply the HJM forward rate drift restriction, that is both

necessary and sufficient condition for the absence of riskless arbi-

trage opportunities, to the dynamics of both the risk free rate and the

credit spread. So we find the following forward dynamics, respec-

tively for the risk-free forward rate and the forward credit spread,

under the risk neutral probability measure P̃

f (t, T) = f (0, T) +
∫ t

0

σ f (v, T, ·)
∫ T

v
σ f (v, s, ·)dsdv

+
∫ t

0

σ f (v, T, ·)dW̃(v),

and

λz(t, T) = λz(0, T) +
∫ t

0

σ z
λ(v, T, ·)

∫ T

v
σ z

λ(v, s, ·)dsdv

+
∫ t

0

ρ

[
σ f (v, T, ·)

∫ T

v
σ z

λ(v, s, ·)ds + σ z
λ(v, T, ·)

∫ T

v
σ f (v, s, ·)ds

]
dv

+
∫ t

0

σ z
λ(v, T, ·)dW̃ z

λ(v), (4)

where ρ is the correlation coefficient between the two Wiener pro-

cesses W̃(t) and W̃ z
λ
(t) under the risk neutral probability measure

and that are assumed to be one-dimensional (see Chiarella, Fanelli,

& Musti, 2011, for further mathematical details in calculating the ex-

pression for the stochastic differential equations).
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