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a b s t r a c t

The aim of this paper is to provide a new straightforward measure-free methodology based on convex hulls to

determine the no-arbitrage pricing bounds of an option (European or American). The pedagogical interest of

our methodology is also briefly discussed. The central result, which is elementary, is presented for a one pe-

riod model and is subsequently used for multiperiod models. It shows that a certain point, called the forward

point, must lie inside a convex polygon. Multiperiod models are then considered and the pricing bounds of

a put option (European and American) are explicitly computed. We then show that the barycentric coordi-

nates of the forward point can be interpreted as a martingale pricing measure. An application is provided for

the trinomial model where the pricing measure has a simple geometric interpretation in terms of areas of

triangles. Finally, we consider the case of entropic barycentric coordinates in a multi asset framework.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

What are the no-arbitrage bounds of a European or American put

option when a two-period trinomial model is used? What can be said

about the evolution of the option pricing bounds as a function of the

parameters of the model? Is there any difference between the trino-

mial and a more general multinomial model? What are the option

pricing bounds of a put option if the set of prices is a compact sub-

set of the real line? What are the no-arbitrage bounds of a European

digital option when a general continuous-time model is used?

It is the aim of the present paper to develop a straightforward,

pricing measure-free approach to answer these questions at the level

of difficulty comparable to the popular textbook of Hull (2011). The

reason why our approach is straightforward comes from the fact that

we derive the pricing bounds of a given option. In particular, we don’t

make any use of the general theory of arbitrage and its consequences,

the real difficult part of the story.

In the standard approach to option pricing, that will be called

“universal”, one derives the consequences of no-arbitrage before en-

visaging the valuation of a given derivative such as an option. As is

well-known, no-arbitrage means that if one can design an investment
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strategy (by taking positions on the existing traded financial securi-

ties) whose initial value is equal to zero at the current time, its future

cash-flows can not be a positive random variable. No-arbitrage thus

excludes the situation in which it is possible to make money with

positive probability with a costless investment strategy. The conse-

quences of this seemingly simple no-arbitrage condition turns out to

be a very difficult mathematical problem in general because one must

show that it is possible to separate the set of costless self-financing

strategies from the set of positive random variables. Invoking a sep-

aration theorem when the conditions are satisfied1, it is shown that

no-arbitrage is equivalent to the existence (but not uniqueness) of

a linear functional, interpreted as a pricing probability measure Q,

which is such that the discounted value of a financial security such as

a stock (the discount rate is the risk-free rate) is a Q-martingale, i.e.,

EQ
(
e−rT ST |S0

)
= S0. However, once this measure is known (or cho-

sen in case it is not unique), the valuation of a derivative such as a

European option is a rather straightforward problem since it reduces

to the computation of an expected value. For instance, if one uses a

one period binomial model to price a derivative, when the pricing

measure Q = (q, 1 − q) is known, one can value any derivative writ-

ten on the underlying asset such as a stock. In this sense, this gen-

eral approach to no-arbitrage is universal because the pricing mea-

sure Q can be used to price any derivative written on the underlying

1 In continuous time models, no-arbitrage becomes no-free lunch to apply a separa-

tion theorem.
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asset. This approach is presented in most (more mathematically in-

clined) textbooks such as Bjork (2004), Elliott and Kopp (2005), Lam-

berton and Lapeyre (2008), Musiela and Rutkowski (1998). When

we work with a finite market model (see e.g., Elliot & Kopp 2005

or Pliska 1997), as pioneered by Ritchken (1985) and Taqqu and

Willinger (1987), the determination of the option pricing bounds

can be done by using linear programming (Ritchken & Kuo, 1988;

Musiela & Rutkowski, 1998; King, 2002; Van der Hoek & Elliott, 2006;

Antonelli, Mancini, & Pinar, 2013; Camci & Pinar, 2009).

From a practical point of view, the problem is not, in general, to

price any conceivable derivatives written on an underlying asset such

as a stock, but to price a given derivative or a small subset of deriva-

tives. Thus, if the difficult part is to derive the consequence of no-

arbitrage in general, why not directly focus on the consequences of

no-arbitrage for a given option? This is the approach which is fol-

lowed in the present paper.

We consider here the case of a given option (or a linear combi-

nation of options with the same maturity), and we show that the

determination of the set of arbitrage-free prices reduces to a well-

known convex hull problem. In particular, the determination of the op-

tion pricing bounds does not require to use a pricing measure. Within

our approach, no-arbitrage simply means that a certain point, called

the forward point, must belong to the convex hull spanned by a set

of points, which is either a convex polygon (incomplete market situ-

ation) or a segment (complete market situation). For a single period

option pricing problem, i.e., with two dates, 0 and T > 0, the forward

price is defined by the two dimensional vector (erTS0; erT�0), where

S0 and �0 are respectively the stock price and the option price at

the current time, and the convex hull is spanned by the set of points

(ST(ω); �T(ω)), where ω ∈ � is a state of the world (or scenario). An

interesting aspect of our approach is that the underlying set of (stock)

prices needs not be a finite set. For instance, if this set is a compact

subset of the real line, the convex hull (of the graph of the option pay-

off) is still a convex polygon or a segment, and nothing is changed.2

What matters is thus not the characteristics of the set of prices, but

the number of vertices of the convex hull. When this number is equal

to two, the option price is unique and the market is complete. On the

contrary, when it is greater (or equal) than three, the option price is

not unique and the market is incomplete. For European options val-

ued with a continuous time model (pure diffusion, jump-diffusion,

infinite activity Levy), things are slightly more complex since the con-

vex hull (of the graph of the option payoff) is not anymore a polygon,

but, as we shall see, the European option pricing bounds can still be

easily determined.

In a multiperiod model, the determination of the option pricing

bounds requires to determine a final convex polygon (possibly a seg-

ment) which is obtained via a sequence of convex hulls. This (back-

ward induction) process applies both to European and American op-

tions with finite maturity and never requires to use a pricing measure.

While straightforward, the case of many periods can be tedious from

a computational point of view. As a result, we illustrate our geometric

approach using a two period model, where all the computation can

be easily done without a computer. For simplicity, as in Boyle (1988)

or Broadie and Detemple (2004), we consider the case of a trinomial

model to value European but also American options. We are able to

explicitly compute the pricing bounds as a function of the parame-

ters of the trinomial model. As already said, this entails to determine

a sequence of convex hulls, and thus does not make any use of a pric-

ing measure. Since we end up with a convex polygon (possibly a seg-

ment) the forward point can be expressed as a convex combination of

its vertices. The non-negative coefficients of such a combination, al-

though generally not unique, define a local system of coordinates with

2 We make the implicit assumption that �T(ω) is finite for each ω.

respect to the vertices, and are called the barycentric coordinates.3 Let

us denote by Q the barycentric coordinates of the forward point. It be-

comes elementary to show that the discounted stock price, but also

the discounted value of the option, are Q-martingales, which means

that the barycentric coordinates Q can be interpreted as a martingale

measure. Illustrations are provided for the case of a single period tri-

nomial model for which the barycentric coordinates of a point inside

a convex polygon are unique, which does of course not mean that the

option price is unique. It is important to realize that within our ap-

proach, the pricing measure Q critically depends on the derivative

(call, put digital etc.) under consideration and is, in general, not equiv-

alent to the underlying statistical measure P due to the fact that many

points are not relevant. However, it turns out that there are barycen-

tric coordinates (that maximize an entropy function) for which Q be-

comes equivalent to P. This more technical material is presented in

the last section of this paper in a multi assets framework.

The remaining part of this paper is organized as follows. The first

section is devoted to the assumptions. The second and third sec-

tion are respectively devoted to the determination of the option pric-

ing bounds and to the barycentric coordinates, interpreted as mar-

tingale measures. Since we offer a new elementary geometric ap-

proach, we made the choice to present the main results as propo-

sitions, and all the other elementary results as facts. Twenty facts are

presented.

2. Assumptions

Two basic types of financial securities will be considered here, the

stock S of a given company, and a (default) risk-free bond that pays a

constant interest rate r > 0. Throughout this paper, continuous com-

pounding will be assumed. The discount factor thus is e−rt but all the

results hold for deterministic interests rates. Throughout the paper,

t = 0 denotes the current time and T > 0 the maturity of the deriva-

tive contract written on the underlying asset S.

Dupačovà, Consigli, and Wallace (2000) introduced a framework

intended for multistage stochastic programs (see also King, 2002

for an option pricing application) called scenario tree which en-

compasses recombining and non-recombining trees. It is used by

Antonelli et al. (2013), Camci and Pinar (2009) and King (2002) for

option pricing and they all consider the case in which the tree is

non-recombining, i.e., in which each node at each time has a unique

parent. In this paper, we consider the case in which the tree is re-

combining, i.e., in which each node may have more than one parent.

This allows us to consider for instance a multiplicative multinomial

stochastic process but it should be clear that our methodology holds

indeed for any type of trees, recombining or not.

Let T = {1, 2, . . . , T} be a set of dates, with T ≥ 1, and let (mi,t)
N
i=1

be N ≥ 2 ordered positive numbers for all t, where m1,t = dt and

mN,t = ut . Let ζ s be a random variable whose realization denoted

ms will be revealed at time s. Let �s := {ds, m2,s, . . . , mN−1,s, us} be

the set of possible realizations4 of ζ s for all s ∈ T . The multiplicative

multinomial (possibly time-dependent, i.e., � may depend on time s)

stochastic process is modeled, for t ≥ 1, by setting

St = S0

t∏
s=1

ζs t ≤ T (1)

where S0 is the initial condition, i.e., the observed stock price at time

t = 0. When N = 2, that is, when the random variable ζ s takes only

3 Cartesian coordinates is a system of coordinates for the representation of a point in

an n-dimensional space in terms of its distance, measured along a set of mutually axes,

from a given origin. On the other hand, barycentric coordinates locate points relative

to a set of existing points rather than an origin. For this reason, they are called local

coordinates. See for instance the textbook of Vince (2010) and more specifically chapter

11 devoted to barycentric coordinates.
4 We mean the support of the underlying probability measure P.
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