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a b s t r a c t

In this paper we address the computation of indifference regions in the weight space for multiobjective in-

teger and mixed-integer linear programming problems and the graphical exploration of this type of infor-

mation for three-objective problems. We present a procedure to compute a subset of the indifference region

associated with a supported nondominated solution obtained by the weighted-sum scalarization. Based on

the properties of these regions and their graphical representation for problems with up to three objective

functions, we propose an algorithm to compute all extreme supported nondominated solutions adjacent to

a given solution and another one to compute all extreme supported nondominated solutions to a three-

objective problem. The latter is suitable to characterize solutions in delimited nondominated areas or to be

used as a final exploration phase. A computer implementation is also presented.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

A multiobjective integer or mixed-integer linear programming

(MOMILP) problem with p ≥ 2 objective functions can be written as:

max z1 = f1(x) = c1x
...

max zp = fp(x) = cpx

}
Max z = f (x) = Cx

s.t. x ∈ X = {x ∈ R
n : Ax = b, x ≥ 0, x j ∈ N0, j ∈ I}

where A is the m × n technological coefficients matrix, being all

constraints transformed into equations by introducing appropriate

slack or surplus variables, and b ∈ Rm is the right-hand-side vec-

tor. I ⊆ {1, . . . , n}, I �= ∅ is the set of indices of the integer vari-

ables, with n the total number of variables (decision variables plus

slack/surplus variables). It is assumed that X is bounded and non-

empty. C is the p × n objective matrix whose rows are the vectors

ck ∈ Rn, k = 1, . . . , p.

If all decision variables are integer, then the multiobjective prob-

lem is pure integer (MOILP), which is a special case of the multiobjec-

tive mixed-integer case. In what follows we will denote by MOMILP

the general case, in which integrality constraints are imposed on all

or a subset of the decision variables.

A feasible solution x′ ∈ X is efficient if and only if there is no

other solution x ∈ X such that fk(x) ≥ fk(x′) for all k = 1, . . . , p and

fk(x) > fk(x′) for at least one k. Let XE denote the set of all efficient

solutions.
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Let Z ⊂ Rp be the image of the feasible region X in the objec-

tive space such that Z = {z ∈Rp: z = Cx, x ∈ X}. If x′ ∈ X is efficient,

z′ = f (x′) = Cx′ is a nondominated criterion point. Let ZND be the set

of all nondominated points, ZND = {z′ ∈ Z : z′ = Cx′, x′ ∈ XE}.

An important concept in MOMILP is the distinction between sup-

ported and unsupported nondominated/efficient solutions.

A nondominated point z′ ∈ ZND is supported if it is located on

the boundary of the convex hull of Z (conv Z). An unsupported non-

dominated point is located in the interior of conv Z (it is dominated

by some convex combination of supported nondominated points).

A supported (unsupported) nondominated point corresponds to a

supported (unsupported) efficient solution.

We can further distinguish two types of supported nondominated

points:

(a) extreme supported nondominated points z ∈ ZND, which

are vertices of conv Z; we will denote these nondominated

points/efficient solutions as ESND solutions;

(b) non-extreme supported nondominated points, which are lo-

cated in the relative interior of a face of conv Z.

Let ZESND denote the set of all ESND points/solutions in the objec-

tive space and XESND the corresponding set in the decision space.

Supported nondominated solutions are optimal solutions to the

weighted-sum scalarization program (Pλ) for some weight vector λ ∈
� = {λ ∈ R

p : λ k > 0, k = 1, . . . , p,
∑p

k=1
λk = 1}:

max zλ =
p∑

k=1

λk fk(x) = λCx (Pλ)

s.t. x ∈ X

http://dx.doi.org/10.1016/j.ejor.2015.06.072

0377-2217/© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS).

All rights reserved.

http://dx.doi.org/10.1016/j.ejor.2015.06.072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.06.072&domain=pdf
mailto:mjalves@fe.uc.pt
mailto:mjoao@inescc.pt
http://dx.doi.org/10.1016/j.ejor.2015.06.072


M.J. Alves, J.P. Costa / European Journal of Operational Research 248 (2016) 72–83 73

� is usually called the weight space and the set of weight vectors

that lead to the same nondominated solution is referred to as an

indifference region in the weight space. The weights of the objective

functions are the parameters in the (Pλ) scalarization program and

the variation of parameters enables to attain different supported non-

dominated solutions. However, there are multiple parameter values

that lead to the same solution, i.e. an indifference set on the param-

eter’s space (weight space) can be defined for each supported non-

dominated solution.

The set � can be decomposed into subsets �(z′), ∀z′ ∈ ZND such

that z′ is supported, where �(z′) denotes the indifference region of z′
in the weight space. It represents the set of weight vectors λ that lead

to z′ through the optimization of (Pλ), i.e., �(z′) = {λ ∈ �: λz′ ≥ λz,

∀z ∈ ZND}. Indifference regions in the weight space are convex poly-

topes (Przybylski, Gandibleux, & Ehrgott, 2010).

The optimization of (Pλ) using the branch-and-bound method

yields (at least) an ESND solution. If there are alternative optima, a

further exploration of the branch-and-bound tree allows for comput-

ing non-extreme supported nondominated solutions. However, un-

supported nondominated solutions are never obtained through (Pλ)

even if a complete parameterization is attempted and all alterna-

tive solutions for a given λ ∈ � are analysed. The ESND points allow

for the whole decomposition of the weight space into subsets �(z′),
z′ ∈ ZESND, because these, and only these points z′ ∈ ZESND, correspond

to indifference regions �(z′) of dimension p − 1 (the dimension of �)

of a MOMILP problem. Therefore, � = ⋃
z′∈ZESND

�(z′). Non-extreme

supported nondominated points are associated with indifference re-

gions of lower dimension resulting from the intersection of the re-

gions of ESND points (these properties can be found in Przybylski

et al. (2010)).

Although the supported nondominated solutions (or even only

the ESND solutions) constitute a subset of all nondominated so-

lutions of the problem, they can provide important insights about

the whole nondominated set because they are on the boundary

(and the ESND are the vertices) of the convex hull of all nondomi-

nated points (Özpeynirci & Köksalan, 2010). Indifference regions in

the weight space also constitute useful information for the decision

maker. He/she may be indifferent to all weight combinations inside

one region because they give rise to the same nondominated point.

An interactive graphical exploration of the weight space in multi-

objective linear programming (MOLP) problems with three objective

functions has been proposed in the TRIMAP method by Clímaco and

Antunes (1987). The use of the weight space as a valuable means to

gather information obtained from different interactive methods, and

its graphical representation to present the information to the deci-

sion maker, has likewise been considered in other interactive MOLP

computational tools (Alves, Antunes, & Clímaco, 2015; Antunes, Alves,

Silva, & Clímaco, 1992). Also considering MOLP problems, Benson and

Sun (2002) proposed a weight set decomposition algorithm to gener-

ate all extreme nondominated points.

The computation of indifference regions in other parameter

spaces has also been addressed. Costa and Clímaco (1999) related ref-

erence points (using achievement scalarizing functions) and weights

in MOLP and defined indifference regions on the reference point

space. Alves and Clímaco (2001) analysed the shape of indifference

regions in the reference point space (in general, non-convex regions)

for all-integer MOILP problems and proposed an approach to define

indifference sets of reference points as long as a directional search pro-

cedure (Alves & Clímaco, 2000) is performed.

Concerning MOMILP problems, Przybylski et al. (2010) and

Özpeynirci and Köksalan (2010) have exploited the weight space to

design algorithms intended to generate all ESND points. These two

approaches are reviewed in the next section.

In the present work we focus on ESND solutions of MOMILP prob-

lems and the exploration of their indifference regions in the weight

space. We propose an approach that is able to compute a subset of

an indifference region using the branch-and-bound tree that solved

the weighted-sum scalarizing program (Pλ) for a given weight vector

λ ∈ �. Acting alone, this approach rarely calculates the entire indif-

ference region for the corresponding ESND solution, and the obtained

sub-region may be much smaller than the full region. However, in-

difference regions can be iteratively enlarged using some properties,

namely convexity. Accordingly, we have developed a procedure that

merges and expands sub-regions by building the convex hull of joined

or disjoined sub-regions of the same solution. An indifference region

can be enlarged not only from a merging process but also as a re-

sult of properties that relate adjacent regions of different solutions.

We explore these properties for three objective problems, proposing

an algorithm to compute all ESND solutions adjacent (in the weight

space sense) to a known ESND solution or even to compute all ESND

solutions of a three-objective problem. These features can naturally

be applied to problems with two objective functions, but we will omit

this case herein as it is straightforward. We also present a computer

implementation in which the indifference regions are graphically

depicted.

The rest of the paper is organized as follows. In Section 2 the re-

lated work is reviewed. Section 3 introduces the technique to com-

pute an indifference sub-region for an ESND solution and an illustra-

tive example is shown. Section 4 gives the main principles to explore

the weight space in MOMILP problems with three objective functions

and describes the algorithms to compute the ESND solutions adja-

cent to a given solution and to compute all ESND solutions. Section 5

presents an overview of the computational implementation, illustrat-

ing the previous features using two examples, and presents compu-

tational experiments. The paper ends with some concluding remarks

and future work in Section 6.

2. Related work

Przybylski et al. (2010) proposed a recursive algorithm for find-

ing ZESND which is based on the following idea: in each iteration, the

weight space is completely decomposed with the solutions computed

so far and the common facets of the regions are explored in order

to compute new solutions and update the weight space decomposi-

tion. Let S ⊆ ZESND denote the set of ESND points known at a given

iteration. For each z′ ⊆ S a super-region �+(z′) is defined such that

�+(z′) = {λ ∈ � : λz′ ≥ λz,∀z ∈ S} Then, the algorithm searches for

new nondominated points at the boundaries of �+(z′). For instance

in three-objective problems, if z′, z′′ ∈ S are adjacent in the cur-

rent weight space decomposition, then �+(z′) ∩ �+(z′′) is a line

segment; suppose that λ1 and λ2 are the extreme points of this

edge; the algorithm investigates the edge by computing all the ESND

points of the following bi-objective problem: max{( f ′
1
(x), f ′

2
(x)) =

(λ1Cx, λ2Cx) : x ∈ X}. Thus, a recursive algorithm is developed. As

new ESND points are added to S, the weight space decomposition is

updated until all elements of ZESND have been found. At the end of the

algorithm, the regions �+(z′) are the real ones, i.e. �+(z′) = �(z′).

The authors have further proved that a suitable initialization of the

algorithm must contain the nondominated extreme points that opti-

mize individually each objective function. This initialization enables

to only explore the facets of each �+(z′) that are not located on the

boundary of �.

Özpeynirci and Köksalan (2010) proposed another algorithm with

the same purpose of finding all points of ZESND. This algorithm does

not use recursion, but it has a strong combinatorial component. The

basic idea consists in introducing p dummy points in the objective

space, Zm = {mk = Mek, k = 1,…,p} where M is a large positive con-

stant and ek is the kth unit vector. These points are infeasible and non-

dominated with respect to all points of ZESND. They have such char-

acteristics that their indifference regions in the weight space touch

all the boundary of � (where one of the weights is close to zero).

The points mk are incorporated into the search, which turns to be on
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