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In this paper, we focused on characterizing and solving the multiple objective programming problems which

have some imprecision of a vague nature in their formulation. The Rough Set Theory is only used in modeling

the vague data in such problems, and our contribution in data mining process is confined only in the “post-

processing stage”. These new problems are called rough multiple objective programming (RMOP) problems

and classified into three classes according to the place of the roughness in the problem. Also, new concepts

and theorems are introduced on the lines of their crisp counterparts; e.g. rough complete solution, rough ef-

ficient set, rough weak efficient set, rough Pareto front, weighted sum problem, etc. To avoid the prolongation

of this paper, only the 1st-class, where the decision set is a rough set and all the objectives are crisp functions,

is investigated and discussed in details. Furthermore, a flowchart for solving the 1st-class RMOP problems is

presented.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

Decision making is a very important and much studied applica-

tion of mathematical methods in various fields of human activity.

In real-world situations, decisions are nearly always made on the

basis of information which, at least in part, is vague in nature. In

some cases (e.g. zooming out, granular computing and system com-

plexity reduction), vague information is used as an approximation to

more precise information. In such situations, this form of approxi-

mation is convenient and sufficient for making good enough deci-

sions. In other cases (e.g. image processing and pattern recognition)

and due to the limited precision in data acquisition phase, vague in-

formation is the only form of information available to the decision

maker.

Since it was pioneered by Pawlak, rough set theory (RST) (Pawlak,

1982, 1996) has become a hot topic of great interest in several fields.

The capability of handling vagueness and imprecision in real-life

problems has attracted researchers to use RST in many fields; one of

them is the ’optimization’. Actually, most real-life problems involve

(1) a process of optimizing simultaneously a collection of conflicting

and competing objectives (i.e. a process of multiple objective pro-

gramming (MOP)) and (2) vague or imprecise descriptions of some

parts of the problem. Therefore, we usually need a suitable frame-

work for handling this hyperdization of MOP and vagueness. For

conventional MOP problem (Ehrgott, 2005; Hwang & Masud, 1979),
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the aim is to maximize or minimize a set of objectives over a certain

decision set, both of which are precisely defined. But in many real-

istic situations, the available data lacke vagueness and inexactness

and the decision maker may only be able to specify the objec-

tives and/or the decision set imprecisely in a ‘rough sense’ using RST.

Youness (2006) was the first who applied RST to the single-

objective programming (SOP) problem and proposed a new opti-

mization problem with rough decision set and crisp objective func-

tion, called “rough single-objective programming” (RSOP) problem.

He also defined two concepts for optimal solutions, namely “surely

optimal“ and “possibly optimal”. Then after, many attempts were

made to overcome the concept of rough mathematical programming.

For more details see (Xu & Yao, 2009a, 2009b; Osman et al., 2011; Lu,

Huang, & He, 2011; Tao & Xu, 2012; Zhang, Shi, & Gao, 2009).

Hence, for the sake of acquiring more realistic models and results

of real-life MOP problems, we present a new extension of RSOP mod-

els presented in Osman et al. (2011), to the case of rough multiple

objective programming (RMOP). A new framework in modeling and

solving the RMOP problem is proposed without requiring any addi-

tional data.

2. Rough set theory (Pawlak, 1982, 1996; Yao, 2008; Zhang & Wu,

2001)

RST was proposed by Pawlak in the mid-1980s, and presents a

new mathematical approach to imperfect (vague/imprecise) knowl-

edge. The problem of imperfect knowledge has been tackled for a long

time by philosophers, logicians and mathematicians. Recently, RST
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has been proven to be an excellent mathematical tool dealing with

vague and imprecise descriptions of objects. It became a crucial is-

sue for artificial intelligence and cognitive sciences, especially in the

areas of machine learning, knowledge acquisition, decision analysis,

knowledge discovery from databases, expert systems, inductive rea-

soning and pattern recognition.

RST expresses ‘imprecision’ by employing a boundary region of

the vague object (e.g. set, number, interval, function, etc.). If the

boundary region of an object is empty it means that the object is crisp

(exact); otherwise the object is rough (inexact). A nonempty bound-

ary region of an object means that our knowledge about the object is

not sufficient to define it precisely. The bigger the boundary the worse

(i.e. the higher the imprecision of) the knowledge we have about the

object.

Let U be a non-empty finite set of objects, called the universal

set, and E ⊆ U × U be an equivalence relation on U. The ordered pair

A = (U, E) is called an approximation space generated by E on U. E gen-

erates a partition U/E = {Y1, Y2, . . . ., Ym} where Y1, Y2, . . . ., Ym are

the equivalence classes of the approximation space A.

In RST, any subset M ⊆ U is described by its lower and upper ap-

proximations in terms of the equivalence classes of A, as follows:

E∗(M) = ∪{Yi ∈ U/E|Yi ⊆ M}
E∗(M) = ∪{Yi ∈ U/E|Yi ∩ M �= φ}

The sets E∗(M) and E∗(M) (or simply M∗ and M∗) are called the

lower and the upper approximations of M respectively, in the approx-

imation space A. Therefore, M∗ ⊆ M ⊆ M∗. The difference between

the upper and the lower approximations is called the boundary of

M and is denoted by BNE(M) = M∗ − M∗ (or simply MBN). The set M

is crisp (exact) in A iff MBN = φ, otherwise M is rough (inexact) in A.

In RST, each element x ∈ U is classified as ‘surely’ inside M iff

x ∈ M∗ or ‘may be’ (I’m not sure if it is or not) inside M iff x ∈ MBN; oth-

erwise x is surely outside M. Furthermore, an element x ∈ U is said to

be “probably inside M”, iff x ∈ M∗. On the other hand, each equivalence

class Y ∈ U/E is classified as ‘completely’ included in M iff Y ⊆ M∗ or

‘partially’ included in M iff Y ⊆ MBN, otherwise Y is completely not in-

cluded in M. Furthermore, an equivalence class Y ∈ U/E is said to be

"possibly included in M", iff Y ⊆ M∗.

3. Rough single-objective programming (Osman et al., 2011)

Consider the following crisp SOP problem

max
x∈M

g(x) (1)

where g(x) is the objective function, and M is the feasible set of the

problem. In the conventional mathematical programming problem,

it is assumed that all the parts (i.e. g(x) and M) are defined in a crisp

sense and “max” is a strict imperative. However, in many practical

situations it may not be reasonable to require that the feasible set or

the objective function be specified in a precise crisp terms. In such

situations, it is desirable to use some type of modeling that is capable

of handling vagueness and imprecision in the problem. This led to

the hybridization between SOP and RST to get the concept of “rough

single-objective programming”. RSOP problems are broadly classified

according to the place of roughness into three classes as follows:

1st-Class: problems with rough feasible set and crisp objective

function.

2nd-Class: problems with crisp feasible set and rough objective

function.

3rd-Class: problems with rough feasible set and rough objective

function.

Unlike the crisp case (where the optimal value is a single crisp

value), the optimal value in RSOP, denoted by ḡ, is defined by its lower

and upper bounds i.e. ḡ∗ and ḡ∗ respectively, such that ḡ∗ ≤ ḡ ≤ ḡ∗.

Therefore, in RSOP we can say that:
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Fig. 1. The optimal sets of RSOP problem.

• a solution x is surely-optimal, if g(x) = ḡ∗,
• a solution x is probably-optimal, if g(x) ≥ ḡ∗,
• a solution x is surely-not optimal, if g(x) < ḡ∗.

Also, in the 1st and 3rd classes of RSOP (where the feasible set is a

rough set), it is remarkable that:

• a solution x is surely-feasible, iff it belongs to the lower approxi-

mation of the feasible set,
• a solution x is probably-feasible, iff it belongs to the upper approx-

imation of the feasible set,
• a solution x is surely-not feasible iff it does not belong to the upper

approximation of the feasible set.

Furthermore, in RSOP the optimal set is replaced by four optimal

sets (See Fig. 1) covering all the possible degrees of feasibility and

optimality of the solutions, as follows:

• The set of all surely-feasible, surely-optimal solutions, denoted by

FOss.
• The set of all surely-feasible, probably-optimal solutions, denoted

by FOsp.
• The set of all probably-feasible, surely-optimal solutions, denoted

by FOps.
• The set of all probably-feasible, probably-optimal solutions, de-

noted by FOpp.

Therefore, we have:

FOss ⊆ FOsp ⊆ FOpp, FOss ⊆ FOps ⊆ FOpp and FOss = FOsp ∩ FOps.

3.1. The 1st-class of RSOP problems (Osman et al., 2011)

Suppose that A = (U, E) is an approximation space generated

by an equivalence relation E on the universe U, and U/E =
{Y1, Y2, . . . ., Ym} is the partition generated by E on U. A RSOP prob-

lem of the 1st-class takes the following form:

max
x∈M

g(x)

s.t.
M∗ ⊂ M ⊂ M∗

M∗, M∗ ⊆ U/E

(2)

where g : U → R is a crisp objective function. M ⊂ U is a rough set in

the approximation space A, representing the feasible set of the prob-

lem. M is given only by its lower and upper approximations, M∗ and

M∗ respectively, and the nonempty boundary region (MBN = M∗ −
M∗ �= φ) of the feasible set indicates the notion of ‘rough-feasibility’

in problem (2). The lower and upper bounds of the optimal objective

value ḡ in problem (2), are given by

ḡ∗ = max{ a, b}, ḡ∗ = max{ a, c}
where (assuming the existence of the solution of the following crisp

problems)

a = max
x∈ M∗

g(x), b = max
Y ∈U/E,
Y⊆MBN

min
x∈Y

g(x), c = max
x∈ MBN

g(x)

Therefore, the optimal sets of problem (2) are given as follows:

FOss = {x ∈ M∗|g(x) = ḡ∗}
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