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In this paper we propose an inexact proximal point method to solve constrained minimization problems with

locally Lipschitz quasiconvex objective functions. Assuming that the function is also bounded from below,

lower semicontinuous and using proximal distances, we show that the sequence generated for the method

converges to a stationary point of the problem.
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1. Introduction

It is well known that the class of proximal point algorithm (PPA) is

one of the most studied methods for finding zeros of maximal mono-

tone operators and in particular to solve convex optimization prob-

lems, see Auslender and Teboulle (2006), Burachik and Iusem (1998),

Burachik and Scheimberg (2000), Chen and Teboulle (1993), Kiwiel

(1997), Rockafellar (1976).

In the last decades a great interest has emerged to extend the

PPA for non monotone variational inequalities and non convex mini-

mization problems not only for extending the convergence theory but

by several applications in diverse science and engineering areas, see

for example the works of Attouch and Bolte (2009); Attouch, Bolte,

and Svaiter (2013); Kaplan and Tichatschke (1998); Pennanen (2002);

Chen and Pan (2008).

In particular the class of quasiconvex minimization problems has

been receiving attention from many research works due to the broad

range of applications in location theory, Gromicho (1998), Fractional

programming and specially in economic theory, see for example

Takayama (1995) and Mas-Colell, Whinston, and Green (1995). Some

related papers are the following: Goudou and Munier (2009), Souza,

Oliveira, da Cruz Neto, and Soubeyran (2010), Chen and Pan (2008),

Cunha, da Cruz Neto, and Oliveira, (2010), Pan and Chen (2007), Papa

Quiroz and Oliveira (2012), Langenberg and Tichatschke (2012), Brito,

da Cruz Neto, Lopez, and Oliveira (2012).
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In this paper we are interested in extending the global conver-

gence of an inexact proximal point method to minimize a quasicon-

vex function constrained on a nonempty closed convex set, that is,

min{ f (x) : x ∈ C̄}, (1.1)

where f : IRn → IR ∪ {+∞} is a quasiconvex function, C is open convex

set on the euclidean space IRn and C̄ is the closure of C. Obviously,

if C = IRn we obtain the unconstrained minimization problem. Some

convergence results have been recently obtained for some research

works:

Attouch and Teboulle (2004), with a regularized Lotka–Volterra

dynamical system, have proved the convergence of the continuous

method to a point which belongs to certain set which contains the

set of optimal points; see also Alvarez, Bolte, and Brahic (2004), that

treats a general class of dynamical systems that includes the one of

Attouch and Teboulle.

Souza et al. (2010), Cunha et al. (2010), Chen and Pan (2008) and

Pan and Chen (2007) studied the iteration

xk ∈ arg min
x∈C̄

{ f (x) + λkd(x, xk−1)}, (1.2)

where C̄ = IRn
+, d is a certain distance to force the iterates xk to stay in

C. Some examples of d based on the literature are the class of Breg-

man, ϕ−divergence and second order homogeneous distances. Un-

der the assumption that f is bounded from below, dom( f ) ∩ IRn
+ �= ∅,

the proximal parameter is bounded and assuming that f is differen-

tiable, these research works obtained the global convergence of the

method to a KKT point of (1.1). Furthermore, the sequence generated

converges to a solution of the problem, should it exist, if the proximal

parameters approach to zero.
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Brito et al. (2012), proposed an interior proximal algorithm in-

spired by the logarithmic-quadratic proximal method for linearly

constrained quasiconvex minimization problems. For that method,

they proved the global convergence when the proximal parameters

go to zero. The latter assumption could be dropped when the func-

tion is assumed to be pseudoconvex.

Langenberg and Tichatschke (2012), motivated from the work of

Kaplan and Tichatschke (1998), studied the iteration (1.2) when C is

an arbitrary open convex set and d is a Bregman distance. Assuming

that f is locally Lipschitz and using the Clarke subdifferential, the au-

thors proved the global convergence of the method to a critical point

of (1.1).

The above works although important have some disadvantages:

• The main difficulty in extending the proximal method for non-

convex function, which was observed by Kaplan and Tichatschke

(1998) and Langenberg and Tichatschke (2012), is that due to the

nonconvexity of f the subproblems of (1.2) may not be convex and

thus, from a practical point of view, we may obtain that mini-

mization subproblems may be as hard to solve globally as the

original one due to the existence of multiple isolated local min-

imizers. These authors have proved, under some appropriate con-

ditions and chose a sufficiently large regularization parameters,

the strong convexity of the proximal subproblems (and thus ef-

ficiently solvable subproblems) for a class of non convex func-

tions, see Theorem 2 and Theorem 5 of Kaplan and Tichatschke

(1998) and Langenberg and Tichatschke (2012) respectively. How-

ever, the above property is not true in general for arbitrary quasi-

convex functions. So, we believe that a basic idea is to weaken the

condition of minimizing a strongly convex regularization function

by another one such that in each iteration we may use local in-

formation of the subproblems. If the regularized function is, for

example, locally strongly convex we will have, in certain sense,

efficiency in solving the subproblems. This motivates the follow-

ing question: Is it possible to introduce a local stationary iteration

that makes much more sense that the previously considered (1.2)

for dealing with nonconvex problems?
• In Rockafellar (1976) it is shown that in some cases let the prox-

imal parameter converges to zero, although the regularizing ef-

fect vanishes, provides superlinear convergence of the algorithm

in the convex case. Motivated by this fact, Brito et al. (2012), Souza

et al. (2010), Cunha et al. (2010), Chen and Pan (2008) and Pan and

Chen (2007) have been proved the convergence of the proximal

method to an optimal point when the parameters converges to

zero. On the other hand, when the proximal parameters are suf-

ficiently greater than zero but bounded from above, Langenberg

and Tichatschke (2012), see Theorem 9 of that work, proved the

convergence to a stationary point which may be in the worst case

a saddle point (observe that stationary point or critical point point

does not necessarily a global nor local minimum point). This mo-

tivates the following question: is it possible to obtain a conver-

gence theory to an optimal point when the proximal parameters

are bounded from above?
• Despite the fact that the proximal point method is not practical

in its exact version, several works, for the convex case, have been

shown that it is possible to obtain implementable algorithms with

good convergence properties, see for example Alvarez, López, and

Ramírez (2010), Liu, Sung, and Toh (2012), Santos and RC (2014).

In our case, for a computational implementation of the proximal

point algorithm for the quasiconvex case it is needed to solve the

iteration (1.2) using a local optimization algorithm, which only

provides an approximate solution. Thus it is important to con-

sider inexact methods. Therefore, from the computational point

of view, is it possible to introduce a inexact proximal method to

solve (1.2) and prove the convergence of the iteration?

In this paper, motivated by a recently work of Papa Quiroz and

Oliveira (2012), we answer the questions of the first and third bullet

points and partially we answer the question of the second bullet one,

see Subsection 4.3, proposing the following proximal method: given

xk−1 ∈ C, find xk ∈ C and gk ∈ ∂°f(xk) such that∥∥xk−1 − xk − ek
∥∥ ≤ max

{∥∥ek
∥∥,

∥∥xk − xk−1
∥∥}

(1.3)

where

ek = gk + λk∇1d(xk, xk−1) (1.4)

with ∂° is the Clarke subdifferential and d is a proximal distance, see

Sections 2 and 3 respectively.

The condition (1.3) has been motivated from the work of Humes

and Silva (2005) and Solodov and Svaiter (1999), where they consid-

ered the following criterion:

||gk + (xk − xk−1)|| ≤ σ max{||gk||, ||xk − xk−1||}
with σ ∈ (0, 1]. Observe that the above condition and (1.3) are differ-

ent and so we may conclude that (1.3) is new in proximal point meth-

ods even for the convex case. When ek = 0 in (1.4) and C = IRn
++ we

obtain the exact version studied by Papa Quiroz and Oliveira (2012)

for the nonnegative orthant.

Observe also that the conditions (1.3)-(1.4) are more practical than

(1.2), where a global minimum point is required in each iteration, and

thus more practical than the works of Souza et al. (2010), Cunha et al.

(2010), Chen and Pan (2008), Pan and Chen (2007) and Langenberg

and Tichatschke (2012). Therefore in our opinion the local station-

ary iterations (1.3)–(1.4) makes much more sense than the previously

considered (1.2) for dealing with nonconvex problems.

Under the assumption that f is proper, lower semicontinuous, lo-

cally Lipschitz and bounded from below on C̄ and using a class of

proximal distance we will prove that {xk} is well defined and if, in ad-

dition, f is quasiconvex it will be proved that {f(xk)} is decreasing and

{xk} converges to some point of U+ := {x ∈ C̄ : f (x) ≤ inf j≥0 f (x j)},
assumed nonempty. Then, under the additional conditions that the

proximal parameter {λk} is bounded from above and

+∞∑
k=1

∥∥ek
∥∥

λk

< +∞ (1.5)

+∞∑
k=1

∣∣〈ek, xk〉∣∣
λk

< +∞, (1.6)

we obtain that the sequence {xk} converges to a stationary point

of the problem. Observe that the above conditions (1.5)–(1.6) have

been used in convex proximal methods, see for example Auslender,

Teboulle, and Ben-Tiba (1999), Kaplan and Tichatschke (2004),

Eckstein (1998), Xu, Bingsheng, and Xiaoming (2006), Solodov and

Svaiter (2000). We also get to rid the assumption (1.6) for a class of

induced proximal distances which includes Bregman distances given

by the standard entropy kernel and all strongly convex Bregman

functions.

The paper is organized as follows: In Section 2 we give some ba-

sic results on quasiconvex theory and Clarke subdifferential of locally

Lipschitz functions. In Section 3 we introduce the class of proximal

distances that we will use along the paper. In Section 4 we present

the inexact algorithm for solving minimization problems with qua-

siconvex functions and analyze its convergence properties. Finally, in

Section 5 we give our conclusions.

2. Basic results

Throughout this paper IRn is the Euclidean space endowed with

the canonical inner product 〈, 〉 and the norm of x given by ||x|| � 〈x,

x〉1/2. Given X⊂IRn we denote bd(X) and X̄ the boundary and closure
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