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a b s t r a c t

In this paper, a capacitated vehicle routing problem is discussed which occurs in the context of glass waste

collection. Supplies of several different product types (glass of different colors) are available at customer

locations. The supplies have to be picked up at their locations and moved to a central depot at minimum

cost. Different product types may be transported on the same vehicle, however, while being transported

they must not be mixed. Technically this is enabled by a specific device, which allows for separating the

capacity of each vehicle individually into a limited number of compartments where each compartment can

accommodate one or several supplies of the same product type. For this problem, a model formulation and

a variable neighborhood search algorithm for its solution are presented. The performance of the proposed

heuristic is evaluated by means of extensive numerical experiments. Furthermore, the economic benefits of

introducing compartments on the vehicles are investigated.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

The vehicle routing problem, which will be discussed in this paper,

is a variant of the classic capacitated vehicle routing problem (CVRP;

for surveys see Golden, Raghavan, & Wasil, 2008; Laporte, 2009; or

Toth & Vigo, 2014) and occurs in the context of glass waste collection

in Germany. Glass waste has to be recycled by law and is used as a raw

material for the production of new glass products. It has to be taken to

recycling stations by the consumers where it is disposed into differ-

ent containers according to the color of the waste (usually colorless,

green and brown glass). Colors are kept separated because the pro-

duction of new glass products is less cost-intensive if the glass waste

is not too inhomogeneous with respect to its color. Trucks, which are

located at a depot of a recycling company, pick up the glass waste

from the recycling stations. Since they possess a relatively large load-

ing capacity, they can call at several recycling stations before they

have to return to the depot. Recent truck models are equipped with a

special device which allows for introducing bulkheads in predefined

positions of the loading space such that it can be split into different

compartments and, thus, enabling transportation of glass waste with

different colors on the same truck without mixing the colors on the
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tour. This gives rise to the question how the tours of the trucks should

be designed given the availability of a device of this kind.

The problem under discussion can be classified as a multi-

compartment vehicle routing problem (MCVRP). However, it is differ-

ent from the ones previously discussed in the literature with respect

to the following properties:

• The size of each compartment is not fixed in advance but can be

determined individually for each vehicle/each tour.
• The size of the compartments can only be varied discretely, i.e.

the walls separating the compartments from each other can only

be introduced in specific, predefined positions.
• The number of compartments, into which the capacity of a vehicle

is divided, can be identical to the number of product types (glass

waste types) but can also be smaller.

Consequently, not only the vehicle tours have to be determined, but

it has also to be decided for each vehicle/tour (i) into how many com-

partments the vehicle capacity should be divided, (ii) what the size

of each compartment should be, and (iii) which product type should

be assigned to each compartment.

The problem is NP-hard, since it is a generalization of the CVRP

(see, for example, Toth & Vigo, 2014). By application of a mathe-

matical model-based exact solution approach, we were only able

to solve problem instances with a limited size to optimality. There-

fore, a heuristic, namely a variable neighborhood search (VNS), has

been developed and will be presented. According to the best of our
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knowledge, this is the first method which has been proposed for this

problem so far. We will further analyze what the economic benefits

are which stem from the introduction of flexibly sizable compart-

ments.

The remainder of this paper is organized as follows. Section 2

presents a formal definition and a mathematical formulation of the

problem. The relevant literature related to the MCVRP is discussed in

Section 3. In Section 4, the proposed variable neighborhood search

algorithm is introduced. Extensive numerical experiments have been

performed in order to evaluate the mathematical model and the VNS.

The design of these experiments and the corresponding results are

presented in Section 5. Finally, the main findings are summarized and

an outlook on future research is given in Section 6.

2. Problem description and formulation

The multi-compartment vehicle routing problem with flexible

compartment sizes (MCVRP-FCS) can be formulated as follows: Let

an undirected, weighted graph G = (V, E) be given which consists of

a vertex set V = {0, 1, . . . , n}, representing the location of the depot

({0}) and the locations of n customers ({1, . . . , n}), and an edge set

E = {(i, j): i, j ∈ V, i < j}, representing the edges which can be trav-

eled between the different locations. To each of these edges, a non-

negative cost ci j, (i, j) ∈ E, is assigned. It is assumed that all of these

costs satisfy the triangle inequality.

Further, let a set P of product types be given. At each vertex (ex-

cept for the depot) exists a non-negative supply sip(i ∈ V\{0}, p ∈ P)

of each of the product types. The supplies have to be collected at their

locations and transported to the depot without the product types be-

ing mixed. A location may be visited several times in order to pick

up different product types. However, if being picked up, each supply

has to be loaded in total. In other words, a split collection of a single

supply is not permitted.

For the purpose of transportation, a set K of homogeneous ve-

hicles is available, each equipped with a total capacity Q. Individu-

ally for each vehicle k ∈ K, the total capacity Q can be divided into

a limited number m̂ of compartments, m̂ ≤ |P|, which allows for

loading products of different types on a single vehicle while keep-

ing them separated during transportation. The size of the compart-

ments can be varied discretely in equal step sizes, i.e. each com-

partment size, but also the total vehicle capacity Q, is an integer

multiple of a basic compartment unit size qunit. Let the set of these

multiples be denoted by M = {0, 1 , 2, . . . , mmax} where mmax =
Q/qunit. Then qm = 1

mmax · m, m ∈ M, denotes a compartment size

relative to the total capacity Q which consists of m (m ∈ M) multi-

ples of the basic compartment unit size qunit. To illustrate these as-

pects, we introduce a small example in which the vehicle capacity Q

amounts to 200 units and the basic compartment unit size qunit to 10

units. Hence, only compartment sizes of 10, 20, 30,…, 200 units or

5 percent, 10 percent, 15 percent,…, 100 percent of the vehicle ca-

pacity can be selected. Accordingly, mmax is equal to 20 and a com-

partment with m = 7 corresponds to a relative compartment size of

qm = 1
mmax · m = 1

20 · 7 = 0.35, i.e. 35 percent of the vehicle capac-

ity. It is important to note that the set of potential compartment con-

figurations is identical for all vehicles. However, the actual configura-

tion in a particular solution might be different for each vehicle.

What has to be determined is a set of vehicle tours, an assignment

of product types to the vehicles and the sizes of the corresponding

compartments such that all supplies are collected, that the capacity

of none of the used vehicles is exceeded, and that the total cost of all

edges to be traveled is minimized.

This problem involves the following partial decisions to be made

simultaneously:

• assignment of product types to each of the vehicles
(this decision determines which product types can be collected by

each vehicle);

• determination of the size of each compartment

(this decision fixes for each vehicle how its total capacity is split

into compartments);

• assignment of supplies to each of the vehicles

(this decision implicitly includes an assignment of locations to

vehicles);

• sequencing of the locations for each of the vehicles

(this decision determines for each vehicle in which sequence the

assigned locations are to be visited).

We note that every vehicle routing problem involves decisions

of the last two types, while the first and the second one define the

uniqueness of the MCVRP-FCS.

In order to formulate a mathematical model for the MCVRP-FCS,

we introduce the following four types of variables:

uipk =
{

1, if supply of product type p at location i is collected
by vehicle k,

0, otherwise,

i ∈ V\{0}, p ∈ P, k ∈ K;

xi jk =
{

2, if i = 0 and edge (i, j) is used twice by vehicle k,

1, if edge (i, j) is used once by vehicle k,

0, otherwise,

i, j ∈ V : i < j, k ∈ K;

ypkm =
{

1, if size qm is selected for product type p in
vehicle k,

0, otherwise,

p ∈ P, k ∈ K, m ∈ M;

zik =
{

1, if location i is visited by vehicle k,

0, otherwise,

i ∈ V, k ∈ K.

The objective function and the constraints of the model can then

be formulated as follows:

min
∑

(i, j)∈A

∑
k∈K

ci jxi jk (1)

∑
k∈K

uipk = 1 ∀i ∈ V\{0}, p ∈ P : sip > 0 (2)

uipk ≤ zik ∀i ∈ V\{0}, p ∈ P, k ∈ K (3)

zik ≤ z0k ∀i ∈ V\{0}, k ∈ K (4)

∑
j∈V:
j>0

∑
k∈K

x0 jk ≤ 2|K| (5)

∑
j∈V:
i< j

xi jk +
∑

j∈V:
j<i

x jik = 2zik ∀i ∈ V, k ∈ K (6)

∑
p∈P

∑
m∈M

ypkm ≤ m̂ ∀k ∈ K (7)

∑
p∈P

∑
m∈M

qmypkm ≤ 1 ∀k ∈ K (8)

∑
i∈V\{0}

sipuipk ≤ Q
∑
m∈M

qmypkm ∀p ∈ P, k ∈ K (9)

∑
i∈S

∑
j∈S:
i< j

xi jk ≤ |S| − 1 ∀k ∈ K, S ⊆ V\{0} : |S| > 2 (10)
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