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a b s t r a c t

We propose, in this paper, a new method to initialize the simplex algorithm. This approach does not involve

any artificial variables. It can detect also the redundant constraints or infeasibility, if any. Generally, the basis

found by this approach is not feasible. To achieve feasibility, this algorithm appeals to the nonfeasible basis

method (NFB). Furthermore, we propose a new pivoting rule for NFB method, which shows to be beneficial

in both numerical and time complexity. When solving a linear program, we develop an efficient criterion to

decide in advance which algorithm between NFB and formal nonfeasible basis method seems to be more rapid.

Comparative analysis is carried out with a set of standard test problems from Netlib. Our computational results

indicate that the proposed algorithm is more advantageous than two-phase and perturbation algorithm in

terms of number of iterations, number of involved variables, and also computational time.

© 2015 Published by Elsevier B.V.

1. Introduction

The simplex algorithm, proposed by Dantzig (1951), is the most

used method to solve linear programming problems. A feasible basis

is a principal data for starting the latter. Outside the canonical form,

it is not easy in practice to exhibit an initial basis even infeasible.

Many methods exist in the literature for initializing the simplex algo-

rithm. Two-phase and big M are the most known methods to find an

initial feasible basis. They require both artificial variables to get the

identity matrix as initial basis. But the addition of artificial variables

leads to increase the size of the problem. Stojkovic and Stanimirovic

(2001) used “the cosine criterion” to get an initial basis for the simplex

algorithm. Paparrizos, Samars, and Stephanides (2003) developed a

method that starts resolution by an infeasible basis. This method in-

volves two artificial variables and two big numbers. Csizmadia, Illés,

and Nagy (2012) developed the concept of s-monotone index selec-

tion rule which unifies the finiteness proof of some anti-cycling pivot

rules. The work by Hu (2007) gives a new technique for searching

a basis, not necessary feasible, based on LU decomposition. In order

to reach feasibility, the author used the perturbation method (Pan,

2000). The main idea of this technique consists in perturbing the

economical function; so that the vector of reduced costs becomes

nonpositive. This approach applies thenceforward the dual-simplex
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algorithm. The optimal basis found by the perturbed problem is feasi-

ble but not necessarily optimal for the original problem. At this stage,

the standard simplex algorithm can be executed normally. Recently,

Nabli (2009) suggested a method, termed nonfeasible method (NFB),

in order to construct an initial feasible solution from an infeasible one.

This method operates without artificial variables or a big M number

and without any perturbation in the objective function. The outcome

of the feasibility is via a modification of the structure of the simplex

algorithm in the choice of the entering and leaving variables. This

method is a new approach which is completely different from the

standard simplex method and also from the dual-simplex algorithm.

In the same paper (Nabli, 2009), Nabli introduced the notion of formal

tableau. As a consequence, he developed another new method called

formal nonfeasible basis and denoted by FNFB. Nabli, Chahdoura, and

Dammak (2013), have combined the method of Hu (2007) with the

nonfeasible basis method.

Extracting a basis even infeasible is not a simple issue. Also, to find

a basic solution of the linear system My = b, related to a standard

form, we need to eliminate first all redundant constraints, if any.

Otherwise it is not possible to find a basis of order m, where m is

the number of rows in matrix M. In this paper, we introduce a new

approach which initializes the simplex algorithm by a feasible basis

of adequate order. We modify slightly the nonfeasible basis method.

When solving a linear program, we develop an efficient criterion to

decide in advance which algorithm between NFB and FNFB seems to

be less consuming in number of iterations.

The paper is organized as follows. After this introduction, the

simplex algorithm is briefly described. In Section 3, we explain our
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algorithm which is able to extract a basis from the matrix govern-

ing the constraints after detecting possible redundancy. An example

is proposed to illustrate our approach. In Section 4, the nonfeasible

basis method is recalled and a slight modification on its pivoting rule

is carried out. We describe likewise our choice criterion. Section 5 is

dedicated to a comparative study between our approach, two-phase

method and the method of Hu (2007). The comparison of different

methods is based on the number of involved iterations and the time

complexity. Finally, Section 6 summarizes our contribution.

2. Simplex algorithm

It is well known that the executing of simplex algorithm is re-

stricted only on standard forms. Each linear program, in canonical or

general form, must be beforehand written in standard form to ensure

its implementation by the simplex algorithm. Any linear program in

standard form is expressed as follows:⎧⎨
⎩

max(or min)[Z(y) = c∗y]
My = b
y ≥ 0Rn ,

where M is a (m, n) matrix satisfying 1 � m < n, c ∈ Rn and

b ∈ Rm are assumed to be column vectors. The mathematical sym-

bol ∗ stands for the transpose operator. The following notations will

be used throughout this paper: M· j = M(:, j) the jth column of M; Mi·=
M(i, :) the ith row of M; Mij the (i, j) entry of M; M(i: j, :) all rows

from i to j of the matrix M and M(:, i: j) all columns from i to j of the

matrix M.

We assume that the rank of matrix M is maximal equal to m,

(rank(M) = m), otherwise all linearly dependent row vectors must be

imperatively removed. This hypothesis ensures the existence of a non-

singular sub-matrix of dimension m called basis, which is commonly

denoted by B. The matrix M is partitioned as M = [B N], where N

is the matrix composed of the remaining columns. Let JB be the set

of basic variable indices and JN = {1, . . . , n}� JB the set of nonbasic

variable indices. According to the partition JB and JN, the data of linear

problem can be expressed as c∗ = (c∗
B c∗

N) and y = (yB
yN

)
. The vector

yB = (yi, i � JB) is composed by the basic variables associated to the

basis B and yN = (yi, i � JN) by the nonbasic variables. A solution

y = (yB
yN

)
is feasible if and only if it satisfies the constraints My = b

and y ≥ 0Rn , otherwise it is called infeasible. Being given a basis B,

the associated solution y = (yB
yN

) = (B−1b
0N

)
is called a basic solution, it is

feasible if and only if B−1b � 0B. Its objective function value is equal

to Z
(B−1b

0N

) = c∗
BB−1b. The reduced cost vector associated to the basis B

is defined as follows:

w∗
N =

{
c∗

N − c∗
BB−1N, if “max”

−c∗
N + c∗

BB−1N, if “min”

It is well-known that, under the hypothesis of feasibility of B, the

condition w∗
N ≤ 0∗

N is sufficient to state that B is an optimal basis or

equivalently
(B−1b

0N

)
is an optimal solution. It becomes necessary in

case of non-degeneracy (B−1b > 0B). If the optimality condition is not

satisfied, (w∗
N � 0∗

N), an adjacent feasible basic solution
(B′−1b

0N′
)

admit-

ting a better objective value (Nabli, 2006; Wolfe, 1985), is selected.

The change from B to B′ is done by swapping a column of B with one

of N. So there are two operations for this exchange. The first is to

determine the index column of N which must enter in JB. This index is

chosen among the set { j ∈ JN/wj = ±(cj − c∗
BB−1N·j) > 0}. Generally,

this set is not reduced to a singleton so there are several choices.

There are many rules (Dantzig, 1963; Dantzig & Thapa, 1997; 2003),

called pivoting rule, to fix the entering variable. Among the rules we

choose steepest-edge rule, proposed by Goldfarb and Ried (1977). It

consists in choosing the maximum reduced cost vector normalized;

and determining the index s � {1, . . . , n − m} for which this maximum

is reached:

s = argmax

{
wj

‖ηj‖/wj > 0, for j = 1, . . . , n − m

}
, where

ηj =
(−B−1Nej

ej

)
.

In the identity above, ej designates the jth vector of the canonical

basis of Rn−m. The steepest-edge rule is adopted because it is the best

pivoting rule in practice (Todd, 2002). The second operation consists

in selecting one column of B, to be released from the basis, so that

the new basic solution remains feasible. This purpose is achieved by

considering the leaving variable index:

r = argmin

{
(B−1b)i

(B−1N.s)i

/(B−1N.s)i > 0, for i = 1, . . . , m

}
.

After permuting the sth column of N with the rth column of B, the

data Z, w∗
N, B−1b and B−1N are updated. This procedure is repeated

until reaching the optimality condition w∗
N ≤ 0∗

N .

For easier handling practice, the elements involved in the simplex

algorithm can be recapitulated in a table, called simplex tableau. To

each basis B corresponds a simplex tableau. Here, we use the con-

densed form (Wolfe, 1985), which is a reduced size tableau of dimen-

sion (m + 1) × (n − m + 1) whereas the standard simplex tableau is

of dimension (m + 1) × (n + 1):

yj1
. . . yjn−m

yi1

B−1N B−1b
.
..

yim

w∗
N ∓Z

The variables yi1
, . . . , yim correspond to the basic variables associ-

ated to the current basis B and yj1
, . . . , yjn−m

are the nonbasic variables.

The interior elements constituting this tableau are concatenated in

one matrix denoted by H:

H =
(

B−1N B−1b
w∗

N ∓Z

)
.

If the pivot is Hrs for some iteration, then the entries composing

the new matrix for the subsequent iteration satisfy the following

expression:

His ←
{

− His

Hrs
for i 
= r

1
Hrs

for i = r

{
Hrj ← Hrj

Hrs
, j 
= s

Hij ← Hij − HisHrj

Hrs
, j 
= s & i 
= r

(1)

When solving a linear program by the simplex method, we are not

forced to calculate all the entries of the simplex tableau, only involved

elements are computed. The revised simplex algorithm consists of

avoiding the wasting time on calculating the elements which are not

used.

3. Initial basis

As mentioned before, to apply the simplex algorithm, a nonsingu-

lar matrix B of dimension m is required. But in general, it is difficult

to detect at first sight such a basis. For a canonical form, the con-

straints are written in the form Ax � b and x ≥ 0Rp , so the matrix M

associated to the standard form is none other than M = [A I], where

I is the identity matrix. The size of the matrix I is described by the

context. Therefore, if b ≥ 0Rm , the matrix B = I is a feasible basis since

B−1b = b ≥ 0Rm . In other words, the slack variables are basic ones for a

canonical form satisfying b ≥ 0Rm , otherwise (b � 0Rm ) or in the case

where the linear program is not written in canonical form, it is often

difficult to extract a feasible basis. For some problems, the rank of the

linear system My = b is lower than m: rank(M) < m. In this case, either



Download English Version:

https://daneshyari.com/en/article/479514

Download Persian Version:

https://daneshyari.com/article/479514

Daneshyari.com

https://daneshyari.com/en/article/479514
https://daneshyari.com/article/479514
https://daneshyari.com

