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a b s t r a c t

Random simulations from complicated combinatorial sets are often needed in many classes of stochastic

problems. This is particularly true in the analysis of complex networks, where researchers are usually inter-

ested in assessing whether an observed network feature is expected to be found within families of networks

under some hypothesis (named conditional random networks, i.e., networks satisfying some linear con-

straints). This work presents procedures to generate networks with specified structural properties which rely

on the solution of classes of integer optimization problems. We show that, for many of them, the constraints

matrices are totally unimodular, allowing the efficient generation of conditional random networks by spe-

cialized interior-point methods. The computational results suggest that the proposed methods can represent

a general framework for the efficient generation of random networks even beyond the models analyzed in

this paper. This work also opens the possibility for other applications of mathematical programming in the

analysis of complex networks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The use of random simulation is quite common when statisti-

cally studying properties of highly combinatorial sets. In many of

those cases, closed-form expressions are hard to be found and the

availability of efficient and correct simulation procedures might be of

remarkable importance.

This is particularly true in the analysis of complex networks, an

interdisciplinary field which brings together tools and methods from

discrete mathematics and computer science with a great concern to-

ward empirical applications, among others, in business, marketing,

epidemiology, engineering, etc. Researchers are often interested in

assessing the hypothesis of whether a particular network property is

likely to appear under a uniform distribution of all networks verify-

ing given constraints, named conditional random networks (Bollobas,

1985). In the absence of closed-form expressions (as it is often the

case for most of random network models), large random samples of

networks satisfying particular properties are required to test these

hypotheses. This work introduces novel procedures to generate this

sample, based on linear and integer optimization. They result in a gen-

eral approach for random network simulation, which outperforms in

versatility some currently available methods.
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Following the standard notation (Ahuja, Magnanti, & Orlin, 1991),

a graph G = (V, E) is defined by a finite set V of n nodes, and a set

of m pairs of them E ⊆ V × V, named edges or arcs. A graph can be

represented by a n × n binary matrix X, called adjacency matrix (AM

from now on), whose (i, j)-entry, xij, is equal to 1 if there is a link

between nodes i and j, and 0 otherwise. We will assume the graph

has no loops, so that the diagonal of X is null. A network is a graph

whose arcs or nodes have associated numerical values (arc costs,

arc capacities, node supplies, etc.). In this work we will make no

distinction and the two terms “graph” and “network” will be used as

synonyms.

The study of random graphs begins with the seminal work of

Erdös and Rainyi (1959), who considered a fixed set of nodes and

an independent and equal probability of observing edges among

them. There are two closely related variants of the Erdös–Rainyi

model:

• the G(n, p) model, where a network is constructed by connecting

nodes randomly with independent probability p;
• the G(n, m)model, where a network is chosen uniformly at random

from the collection of all graphs with n nodes and m edges.

Both models possess the considerable advantage of being exactly

solvable for many of their average properties: clustering coefficient,

average path length, giant component, etc. (For more details about

network properties, see Bollobas (1985), and Wasserman and Faust

(1994).) In other words, the expectation of many structural properties
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of networks generated by the Erdös–Rainyi processes is analytically

obtainable. Conditional uniform models can be seen as a generaliza-

tion of the G(n, m) model, when the conditioning information is not

necessarily the number of edges but whatever other arbitrary net-

work property. Unfortunately, in this case we have very few analytical

results and simulation is required to obtain empirical distributions of

their average properties.

Although other Operations Research tools have been used in the

context of social networks (Berghammer, Rusinowska, & de Swart,

2010; Gómez, Figueira, & Eusébio, 2013), as far as we know, this

work is the first attempt to use linear and integer optimization for

the generation of several classes of conditional random graphs. Pre-

vious approaches, developed within the fields of mathematical and

computational sociology, were ad hoc procedures for some particu-

lar types of networks, in general difficult to generalize and not very

efficient. For instance, the distribution of all networks conditioned to

the nodes in- and out-degree has difficult combinatorial properties,

as its analytical study involves binary matrices with fixed marginal

rows and columns. In this respect, some combinatorial results have

been obtained by Ryser (1957), who derived necessary and sufficient

conditions for two vectors of non-negative integers to constitute the

row sums and column sums of some zero-one matrix. On the other

hand, ways to generate uniform random networks with given de-

gree distribution were developed in Snijders (1991), Rao, Jana, and

Bandyopadhyay (1996), Charon, Germa, and Hudry (1996), Roberts

(2000) and Verhelst (2008), although they were computationally ex-

pensive and prohibitive for very large AMs.

In practice one would like to go even further in conditioning, which

however leads to self-defeating attempts because of combinatorial

complexity. This work provides a general methodological framework

to generate networks with constraints, representing structural fea-

tures we wish to control for.

Let xij be entries of the AM of either a directed or undirected graph

with no loops or multiples edges. The AM is an element of the set of

binary matrices

χ = {xij ∈ {0, 1}, (i, j) ∈ H},
where H = {(i, j): 1 ≤ i ≤ n − 1, i < j ≤ n} for undirected graphs

or H = {(i, j): 1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j} for directed graphs.

(1)

The continuous relaxation of χ, name it CR(χ), is obtained by re-

placing xij ∈ {0, 1} by xij ∈ [0, 1], in (1). Clearly, all extreme points

of CR(χ) are integer. If we consider a conditional graph by adding

extra linear constraints to χ, then CR(χ) may contain fractional

extreme points, unless its constraints matrix is totally unimodu-

lar (TU, from now on). As shown in Heller and Tompkins (1956),

the next theorem provides sufficient conditions for a matrix to

be TU:

Theorem 1. Let A ∈ {−1, 0, 1}m×n be a matrix obtained by elementary

operations of B ∈ Zm×n and consider a partition of the rows of A in two

disjoint sets J1 andJ2. The following three conditions together are suffi-

cient forB to be TU:

1. Every column of A contains at most two non-zero entries, which are

either 1 or −1.

2. If two non-zero entries in a column of A have the same sign, then the

row of one is in J1, and the other in J2.

3. If two non-zero entries in a column of A have opposite signs, then the

rows of both are either in J1 or J2.

The above theorem will be extensively used in next section. More

details on unimodularity in integer programming can be found in

Schrijver (1998). If the constraints matrix of CR(χ) is TU, each extreme

point of CR(χ) represents a graph. Therefore, it is possible to generate

a bunch of graphs by merely solving linear programs (LP) with random

gradients in the objective function, or by non-degenerated simplex

pivoting, starting from a given initial extreme point (Padberg, 1999).

Moreover, they can be generated in polynomial time if interior-point

methods are used (Wright, 1996).

The paper is organized as follows. Section 2 is devoted to the

characterization of the convex hull of polytopes associated to some

families of conditional random networks. We will differentiate be-

tween families whose constraints are TU, and those which may give

rise to fractional AMs. Supported by these results, Section 3 presents

two particular procedures for the generation of conditional random

networks, and analyzes the probability distribution of the LP solu-

tions. Section 4 illustrates these techniques using some real-world

data sets.

Throughout the paper we denote the vector of variables

associated to the components of the AM as either xT =
[x12, . . . , x1n, x23, . . . , x(n−1)n, x21, . . . , xn(n−1)] (i.e., the rowwise upper

triangle of AM followed by its columnwise lower triangle) for directed

graphs, or xT = [x12, . . . , x1n, x23, . . . , x(n−1)n] (only the rowwise upper

triangle of AM) for undirected graphs.

2. Total unimodularity of constraints from some conditional

random networks

Let χ be the set of AMs of a family of either directed or undirected

networks with n nodes, and let CR(χ)be its continuous relaxation. For

about twenty families of networks the extreme points of CR(χ) can

be seen to be integer. Although making an extensive list of all these

families is out of the scope of this work, some of the most relevant

ones will be discussed in the following sections.

Next Proposition 1, which provides a sufficient condition for the

existence of a bijection between extreme points of CR(χ) and the set

of feasible networks, will be useful to show that some constraints

matrices are TU.

Proposition 1. For a given family of either directed or undirected net-

works with n nodes, let F ∈ R
l×m, be a matrix of l ≤ m linear con-

straints characterizing the family of networks under consideration,

where m = n(n − 1)or m = n(n − 1)/2 for, respectively, directed and

undirected networks. Let CR(χ) = {x ∈ [0, 1]m : Fx = b}be the contin-

uous relaxation of the constraints. If b is integer and F can be re-

duced by elementary row operations to a matrix, call itF′, with a

unique unitary element (either +1 or −1) per column and all the el-

ements of the same row with the same sign, then there is a bijection

between the extreme points of CR(χ) and the set of networks under

consideration.

Proof. In standard form, the system of linear constraints associated

to CR(χ) is[
I I
F ′

] [
x
s

]
=
[

e
b

]
,

[
x
s

]
≥ 0. (2)

From Theorem 1, the constraints matrix of (2) is TU by considering

the following partition of rows: set the first m rows (associated to the

identities) in J1; if elements of row i of F′ are negative, then set this

row in J1; otherwise, if they are positive, set the row in J2. Therefore,

all extreme points of CR(χ) are integer and they correspond to the

AM of a network. In addition, no integer point may be located in the

interior of CR(χ)since it is a subset of the unit hypercube, completing

the proof. �

In some cases there is no bijective relation between a family of

conditional random networks and the extreme points of its polyhe-

dron, since some basic solutions may be fractional. However, if we

can ensure that no integer solution is in the interior of the polyhe-

dron, this injective relation (i.e., any random network is associated

to an extreme point, but not the opposite) is still useful, whenever

some kind of acceptance–rejection technique is considered for frac-

tional solutions. This is the case, for instance, of networks conditioned
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