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a b s t r a c t

Railway capacity determination and expansion are very important topics. In prior research, the competition

between different entities such as train services and train types, on different network corridors however

have been ignored, poorly modelled, or else assumed to be static. In response, a comprehensive set of multi-

objective models have been formulated in this article to perform a trade-off analysis. These models determine

the total absolute capacity of railway networks as the most equitable solution according to a clearly defined

set of competing objectives. The models also perform a sensitivity analysis of capacity with respect to those

competing objectives. The models have been extensively tested on a case study and their significant worth is

shown. The models were solved using a variety of techniques however an adaptive E constraint method was

shown to be most superior. In order to identify only the best solution, a Simulated Annealing meta-heuristic

was implemented and tested. However a linearization technique based upon separable programming was

also developed and shown to be superior in terms of solution quality but far less in terms of computational

time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Railway capacity determination and capacity expansion are in-

creasingly important topics as railways become more developed, so-

phisticated and have greater demands placed upon them in the future.

This article considers those tasks because there are significant lim-

itations and weaknesses in prior approaches. Also there are many

opportunities for the development of more advanced, sophisticated

and all-encompassing techniques. Railway capacity determination

and expansion activities have been addressed in a variety of different

ways in past research. Some approaches have been purely analytical,

however the majority have been empirical or simulation based. Re-

cent examples that are noteworthy are: Dicembre and Ricci (2011),

Singh et al. (2012), Mussone and Wolfler (2013), Yaghini (2014),

Shih, Dick, Sogin and Barkan (2014), Froidh, Sipila and Warg (2014),

Di Giandomenico, Fantechi, Gnesi and Itria (2013), Goverde, Corman

and D’ariano (2013).

This article however specifically builds upon the research in

Burdett and Kozan (2006), Kozan and Burdett (2005), and Burdett

(2015) which predominantly considers the analysis of absolute ca-

pacity. In Burdett and Kozan (2006) the concept of absolute capacity

was first defined and the value of analysing it was discussed in de-

tail. In essence absolute capacity is a measure of the total possible
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throughput of trains across all the corridors of a railway network. It

is an ideal level that only occurs when critical sections of rail are con-

tinuously occupied and train "interaction effects" and "interference

delays" that are resolved by proper train scheduling (Burdett & Kozan,

2009a, 2009b), are ignored. Hence it is a form of structural analysis.

Although absolute capacity is an overestimation of real "operational"

capacity, it is sufficiently accurate for high level planning purposes,

and thus provides a robust metric for benchmarking. This concept

is also used in this article and is denoted forthwith by A and a num-

ber of other variations involving different sub scripting alternatives. It

should be noted that this article does not consider how to optimise the

performance of the network. To optimise the networks performance,

maximising the number of trains can be detrimental as interaction

effects and delays can be increased which reduce capacity utilisation.

The highlight of Burdett and Kozan (2006) was an optimisation

approach that identifies the absolute capacity of a railway network,

subject to a number of imposed technical constraints, and for a wide

range of defined “real life” operational conditions such as the propor-

tional mix of trains and their direction of travel, the length of trains,

dwell times, and the presence of crossing loops and intermediate sig-

nals. In Kozan and Burdett (2005), rail access charging methodologies

were also proposed. In Burdett (2015) supplementary analytical tech-

niques for measuring and planning capacity expansion activities were

developed. The new features in that article were track duplications

and track sub divisions. Those developments identify how railway

networks can be best expanded, either immediately or over time.

http://dx.doi.org/10.1016/j.ejor.2015.03.020

0377-2217/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ejor.2015.03.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.03.020&domain=pdf
mailto:r.burdett@qut.edu.au
http://dx.doi.org/10.1016/j.ejor.2015.03.020


490 R.L. Burdett / European Journal of Operational Research 245 (2015) 489–505

The models developed in Burdett and Kozan (2006) and Burdett

(2015) are essential techniques for absolute capacity determination

however they assume a specific mix of trains is defined. Hence as only

a single value of capacity is identified, those capacity models can only

be used to identify how the infrastructure can be used and whether

it can support an intended future traffic load. In practice, railway net-

works must be analysed for different mixes of trains. The number of

different mixes that could be analysed is vast. To understand what

occurs more generally, a sensitivity analysis or some other type of

approach is required. In response a multi-objective approach is pro-

posed in this article. The significance of a multi-objective approach

is also that a variety of competing capacity metrics can be incorpo-

rated. In contrast the original model considered only a single objective

which was the total number of trains, with for example no emphasis

or meaning given to trains or to train services of different type. As

few if any railways operate with a single train or service type, and

those trains are not of equivalent worth, the previous models were

somewhat inadequate. There are many ways to regulate competition

and a multi-objective approach is investigated in this article as the

best way to perform a sensitivity analysis of railways.

On the topic of multi-objective optimisation, several articles

have considered railway applications. Ghoseiri, Szidarovszky and

Ashharpour (2004) developed a multi-criteria optimisation approach

to schedule trains. The competing objectives were fuel consumption

and total passenger time. The Pareto frontier was determined using

the e-constraint method and then a “distance” based method was

utilised to solve the multi-objective decision problem. Twenty one

modest sized test cases were solved. Zou and Zhong (2005) developed

a branch and bound approach to schedule trains on double tracks. As

the objective was bi-criteria, dominance rules were developed and

Pareto solutions were generated. Lu et al. (2013) considered the de-

velopment of a framework for evaluating the performance of railway

networks. They proposed a “quality of service” framework that in-

cludes attributes like punctuality, resilience, energy/resource usage,

journey time, etc. The proposed framework was considered because

railway network performance is so multi-faceted. This affects both

strategic and tactical planning. This article gives evidence (and moti-

vation) of the need for more multi-objective planning approaches.

The articles by Kim and De Weck (2005, 2006) are generic and do

not consider topics in railways. Those papers are however noteworthy

for the development of multi-objective optimisation techniques. In

their 2005 paper a method was developed for determining the Pareto

front for bi-objective optimisation problems. Their approach is an

adaptive version of the WSM, and is labelled AWS. It approximates a

Pareto front by gradually increasing the number of solutions on the

front. It concentrates computational effort where it is needed. In the

2006 paper multi-objectives were considered. A mesh of Pareto front

patches was identified and refined.

2. Multi-objective capacity models

Access to railway networks is competitive in practice. As previ-

ously stated, railways are rarely constructed for specific services, and

typically must sustain and support the movement of a mix of both

passenger and freight services. There are a variety of different com-

petitions that may be characterised and how this competition is reg-

ulated, greatly affects the outcome of any analysis of capacity. The

following competition types are introduced: service_versus_service,

train_versus_train, corridor_versus_corridor. These types all refer to

competitions between trains. In summary trains of different service

types (like passenger and freight) compete, but individual trains also

compete against other trains. Similarly trains with different routes

(i.e. that traverse different corridors) compete against those with

other routes.

In Burdett and Kozan (2006) competition was regulated by the in-

troduction of three parameters, namely the proportional mix of train

types (i.e. the proportional distribution), the directional mix (i.e. the

directional distribution), and the proportional flow of trains on dif-

ferent corridors (i.e. the percentage flow). These had to be specified

a-priori, and were assumed to be static. These three parameters de-

scribe most of the different types of competition.

In this article several different multi-objective models have been

developed to address the different forms of competition on the net-

work. A base (i.e. core) capacity model however is first reviewed as

the new models are based upon it.

2.1. The base capacity model

A review of the base model is presented here. In that model the

set of train types is denoted by I, the set of corridors by C, and the

set of section by S. The number of tracks on each section is denoted

by τs and the set of sections in each corridor is denoted by Ωc. The

purpose of the model is to determine the maximum number of trains

that can traverse the network over time T. Of the total number of

trains selected by the model, the number of trains of each type is also

identified. For example
→
x c

i
and

←
x c

i
are the number of trains of type

i that traverse corridor c in each direction respectively. Similarly, �ys
i

and
←
y s

i
are the number of trains of type i that traverse each section

s. The sectional occupation times in each direction are denoted by �Ts
i

and
←
T s

i
and these are assumed to be provided. These values primarily

include the sectional running time (SRTs
i ), but may also include other

time spent on sections, such as loading or unloading passengers and

freight, breakdowns, delays, acceleration, deceleration, etc. The SRT

may be measured or theoretical values may be used. For example

the free flow sectional running time is as follows: SRTs
i = 60 × Ls/Vi

where Ls is the section length, Vi is the train speed, and 60 is multiplier

needed to convert to minutes.

The base model has a set of standard constraints that regulate

the mix of trains and the flow of trains across every section of the

network over time. The mix regulation constraints are optional, and

can be added or removed as desired. They are as follows:

∑
i∈I
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x c
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x c

i

) = σc

∑
c′∈C

∑
i∈I

(→
x c′
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∀c ∈ C

[Mix across corridors] (1)

→
x c

i + ←
x c

i = ηc,i

∑
i′∈I

(→
x c

i′ + ←
x c

i′
) ∀i ∈ I, c ∈ C

[Proportional mix using ηc,i] (2)

→
x c

i = μc,i

(→
x c

i + ←
x c

i

) ∀i ∈ I, c ∈ C [Directional mix] (3)

The proportion of trains of each type in the forward direction is de-

noted by μc,i or by
→
μc,i. Hence,

→
μc,i + ←

μc,i = 1. The flow of trains on

each corridor proportional to that across all corridors is denoted as

the percentage flow and is denoted by σc. The proportion of trains of

each type on each corridor is denoted by ηc,i. Its definition regulates

the competition between train types on different corridors. In other

words on each corridor, the mix of trains is selected separately such

that
∑

i∈I ηc,i = 1 ∀c ∈ C.

An alternative is proposed here whereby ηc,i could be redefined

as the proportion of trains on each corridor of each type. In other

words, for each train type, the mix is specified differently between

corridors and such that
∑

c∈C ηc,i = 1 ∀i ∈ I. To avoid confusion a

separate parameter is defined for this situation, namely κc,i. Hence
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