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a b s t r a c t

This paper examines variance swap pricing using a model that integrates three major features of financial

assets, namely the mean reversion in asset price, multi-factor stochastic volatility (SV) and simultaneous

jumps in prices and volatility factors. Closed-form solutions are derived for vanilla variance swaps and

gamma swaps while the solutions for corridor variance swaps and conditional variance swaps are expressed

in a one-dimensional Fourier integral. The numerical tests confirm that the derived solution is accurate and

efficient. Furthermore, empirical studies have shown that multi-factor SV models better capture the implied

volatility surface from option data. The empirical results of this paper also show that the additional volatility

factor contributes significantly to the price of variance swaps. Hence, the results favor multi-factor SV models

for pricing variance swaps consistent with the implied volatility surface.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The management of volatility risk has gained increased attention

in financial markets since the onset of the recent global financial cri-

sis. Variance swap is a typical financial tool for managing this risk.

Numerous researches have been done on variance swaps (Carr &

Madan, 1998; Demeterfi, Derman, Kamal, & Zou, 1999). However,

none of them consider the discrete monitoring principle or the use

of stochastic volatility model. Until recently, Zhu and Lian (2011)

solve the discretely sampled variance swap pricing formula under

the Heston’s stochastic volatility (SV) model using a partial differen-

tial equation (PDE) approach. Zheng and Kwok (2012) consider the

stochastic volatility simultaneous jump (SVSJ) model in the valuation

of various types of variance swap contracts using a probabilistic ap-

proach. They also include saddle-point approximation in Zheng and

Kwok (2013a) and Fourier transform algorithms in Zheng and Kwok

(2013b), respectively, in variance swap pricing under Lévy processes.

In this paper, we generalize these recent advances in variance

swap pricing to a wider class of models that incorporates the follow-

ing well-known features of financial asset dynamics: mean reversion

in asset price, multi-factor SV and simultaneous jumps in price and

volatility factors. Therefore, the model considered embraces the He-

ston SV and SVSJ models as its special cases. Mean reversion is a

well-known feature in commodity markets. A list of empirical studies

supporting the existence of mean reversion can be found in Fusai,
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Marena, and Roncoroni (2008). Their model is extended to incorpo-

rate jumps by Chung and Wong (2014). Wong and Lo (2009) propose

an option pricing model with mean reversion and the Heston SV to

capture information contained in the term structure of futures prices.

The Wong and Lo model is also found to be a special case of our

model.

Another well-known empirical finding is that the implied volatil-

ity surface solved by matching market option prices and the Black–

Scholes formula shows a smiling pattern. Numerous models have

been proposed to capture this pattern, including the SV models. Em-

pirical evidence, however, shows that the level of implied volatility is

independent of the slope of the volatility smile. Although a one-factor

SV model can generate a steep smile or a flat smile for a given volatil-

ity, it fails to generate both patterns for a given parameterization.

Using the Black–Scholes implied volatility for S&P 500 options over

15 years, the empirical study by Christoffersen, Heston, and Jacobs

(2009) shows that a two-factor SV model is sufficient to model the

stock return volatility based on a principal component analysis. The

empirical study by Li and Zhang (2010) confirms the existence of

the second volatility factor using a nonparametric test. Therefore, we

consider a two-factor SV model in this paper.

Apart from mean reversion and multifactor SV, jumps in the re-

turn process and volatility factors have also received a great deal of

research attention. Jacod and Todorov (2010) discover that the prices

of most of the constituent stocks in the S&P 500 index jump together

with their volatilities. Duffie, Pan, and Singleton (2000) compare an

SV model without jumps, an SV model with jump in price and an SVSJ

model and show that the SVSJ model is able to produce an implied

volatility smile closest to the one observed in the market. Wong and
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Zhao (2010) apply a model with mean reversion and two SV factors to

currency option pricing. However, they do not incorporate jumps nor

investigate the implications of their model for variance swap pricing.

In this paper, we value various types of discretely monitored vari-

ance swaps under the proposed model. We follow Zheng and Kwok

(2012) in using the square of the geometric return of the underlying

asset to represent the realized variance in the variance swaps. The

solution for the fair strike price in the variance swap contract, or the

variance swap price, relies on the analytic joint characteristic func-

tion of the log asset prices at two different time points. We obtain

this characteristic function by first deriving the joint characteristic

function of the log asset price and its volatility at a particular time

point. Then, we transform the payoff function of the variance swap

into an exponential function. This enables the variance swap price to

be deduced from the characteristic function.

The remainder of this paper is organized as follows. The proposed

model is presented in Section 2, where we also derive the joint charac-

teristic function of the log asset price and the volatility. The analytical

formulas for various types of variance swap contracts are obtained

in Section 3. Empirical and numerical experiments are conducted in

Section 4. Specifically, the empirical experiments illustrate the ef-

fect of the second volatility factor on variance swap prices. Section 5

concludes the paper.

2. The model

Under the risk-neutral measure, we postulate that the underlying

asset St and its two volatility factors V1t and V2t jointly evolve as

follows. Let St = exp (Xt).

dXt = [θ(t)−mXt − V1t + V2t

2
]dt +

√
V1tdW1

t +
√

V2tdW3
t +JX

t dN1
t ,

dV1t = [a1(t)− b1V1t]dt +σ1

√
V1t[ρ1dW1

t +
√

1−ρ2
1 dW2

t ] + JV1

t dN1
t ,

dV2t = [a2(t)− b2V2t]dt +σ2

√
V2t[ρ2dW3

t +
√

1−ρ2
2 dW4

t ] + JV2

t dN2
t ,

(1)

where W1
t , W2

t , W3
t and W4

t are independent standard Wiener pro-

cesses; N1
t and N2

t are independent Poisson processes with constant

intensities λ1 and λ2, respectively; and JV2 , JV1 and JX are indepen-

dent random variables that represent random jump sizes and which

are independent of the Wiener processes and Poisson processes.

This model (1) embraces most of the important derivatives pric-

ing models in the literature. The simultaneous jumps on asset return

and its volatility considered by Zheng and Kwok (2012) are reflected

by the Poisson process N1
t , while N2

t models jumps in the volatility

process independent of the asset return. The constant m is the mean-

reversion speed of the log asset, the deterministic function θ (t) is

related to the equilibrium mean level of the log asset at time t and JX

denotes the random jump size of the log asset. Similarly, the constant

bi is the mean-reversion speed of the ith volatility factor, the deter-

ministic function ai(t) is related to the equilibrium mean level of the

ith volatility factor at time t, the constant σ i is the volatility coeffi-

cient of the ith volatility factor process and JVi denotes the random

jump size of the ith volatility factor for i = 1, 2. Notice that it is not

necessary to know the explicit form of θ (t) since we will show in later

part that this term can be calibrated with futures as a whole. If there

is no jump, the model is reduced to the mean reversion model with

two-factor SV in Wong and Zhao (2010). If the mean-reversion speed

m is further set to zero, it becomes the two-factor SV model proposed

by Christoffersen et al. (2009).

2.1. The characteristic function

The payoff of variance swaps depends on the underlying asset

prices realized at time points 0 < t1 < ��� < tn. Thus, the valuation

needs the joint distribution of asset prices at these time points. We

thus derive the multivariate characteristic function of log-spot prices,

ln St1
, . . . , ln Stn , under the proposed model and then apply the results

to the variance swap pricing in the next section.

This section is organized as follows. We begin with a mean re-

version model with a one-factor SV and extend it to incorporate the

second SV factor. As shown in the later analysis, the process with two

SV factors can be written as the sum of two independent processes

with one SV factor. As the building block for the later analysis, the

following lemma presents the joint characteristic function of the log-

asset value and its variance under the mean reversion model with

a one-factor SV process and simultaneous jumps. Afterward we de-

rive the joint characteristic function of the log-asset values under the

model (1).

Lemma 2.1. Consider the mean reversion model with SV and simulta-

neous jumps:

dXt = [θ(t)− mXt − Vt

2
]dt + √

VtdW1
t + JX

t dNt,

dVt = [a(t)− bVt]dt + σ
√

Vt[ρdW1
t +

√
1 − ρ2dW2

t ] + JV
t dNt,

(2)

where W1
t and W2

t are independent standard Wiener processes; Nt is a

Poisson process with constant intensity λ independent of the two Wiener

processes; and JX
t and JV

t are random jump sizes of the log asset price

and volatility, respectively. JX
t and JV

t are independent of the two Wiener

processes and the Poisson process. Then, the joint characteristic function

of Xt and Vt is given by

f (x, v, t; φ,ϕ) = E [exp(iφXT + iϕVT)|Xt = x, Vt = v] (3)

= exp[A(T − t; φ)x + B(T − t; φ,ϕ)v

+ C(T − t; φ,ϕ)], (4)

where T � t and i = √−1,

A(τ ; φ) = iφe−mτ ,

B(τ ; φ,ϕ) = U(e−mτ )+ e−bτ V(e−mτ )
1

iϕ−U(1) + σ 2

2m

∫ e−mτ

1 y
b
m −1V(y)dy

,

C(τ ; φ,ϕ) =
∫ T

T−τ
[θ(s)A(T − s; φ)+ a(s)B(T − s; φ,ϕ)

+λE[exp(A(T − s; φ)JX + B(T − s; φ,ϕ)JV)− 1]]ds,

U(y; φ)

= 2my

σ 2

(
√

1 −ρ2 −ρi)σφ
2m

	(a∗, b∗, y
ω(φ)

)+ a∗
b∗ω(φ)

	(a∗ + 1, b∗ + 1,
y

ω(φ)
)

	(a∗, b∗, y
ω(φ)

)
,

V(y; φ) =
	2(a∗, b∗, 1

ω(φ)
)

	2(a∗, b∗, y
ω(φ)

)
e

σφ
m (1−y)

√
1−ρ2

,

a∗ = (
√

ρ2 − 1 + ρ)b∗
2

+ σ
4m√

ρ2 − 1
, b∗ = 1 − b

m
, ω(φ) = −m

σφ
√

1 − ρ2
,

and 	(·, ·, ·) is the degenerated hypergeometric function.

Proof. The Feynman–Kac formula states that f(x, v, t) is governed by

the following partial integro-differential equation (PIDE):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− ∂ f
∂t

= [θ(t)− mx − v
2

] ∂ f
∂x

+ [a(t)− bv] ∂ f
∂v

+ v
2

∂2f
∂x2 + σ 2v

2
∂2f
∂v2 + ρσ v ∂2f

∂x∂v

+λE[f (x + JX, v + JV, t)− f (x, v, t)],

f (x, v, T) = exp(iφx + iϕv).

From the affine structure of our model, we postulate f(x, v, t) admitting

the form (4). Substituting (4) into the above PIDE gives the following

system of ordinary differential equations for A, B and C:

∂A

∂τ
= −mA(τ ),
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