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a b s t r a c t

We analyze the effect of demand uncertainty, as measured by entropy, on expected costs in a stochastic inven-

tory model. Existing models studying demand variability’s impact use either stochastic ordering techniques

or use variance as a measure of uncertainty. Due to both axiomatic appeal and recent use of entropy in the

operations management literature, this paper develops entropy’s use as a demand uncertainty measure. Our

key contribution is an insightful proof quantifying how costs are non-increasing when entropy is reduced.

© 2015 Elsevier B.V. All rights reserved.

1. Background

Entropy is a measure of uncertainty strongly advocated by Jaynes

(2003) and originally popularized by Shannon (1948). Let D be

a discrete random variable with probability mass function p =
(p1, . . . , pN), then entropy H(p) is defined as

H (p1, . . . , pn) = −
n∑

i=1

pi log(pi). (1)

A good introduction to entropy as a measure of uncertainty can be

found in Abbas (2006). Maximizing Eq. (1) subject to constraints based

on existing knowledge (e.g. the mean, support, moments, etc.) is

known as the maximum entropy principle (Jaynes, 1957), and is con-

sidered a uniquely correct method for inductive inference (Johnson &

Shore, 1983; Shore & Johnson, 1980).

Our work in this paper solidifies the theoretical connection

between entropy as a measure of demand uncertainty and expected

loss. Despite the concept of entropy being around for over 60 years,

the operations management literature has been slow to adopt this

uncertainty measure. Maglaras and Eren (2015) comment that

“to the best of our knowledge, the operations management and

revenue management literatures have not explored the use of ME

(maximum entropy) techniques to approximate unknown demand

or willingness-to-pay distributions.” Recently, however, entropy

is being explored. References to entropy within both operations
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management (see for example Andersson, Jörnsten, Nonås, Sandal, &

Ubøe, 2013; Maglaras & Eren, 2015; Perakis & Roels, 2008; Shuiabi,

Thomson, & Bhuiyan, 2005) and related contexts are increasing. This

includes the contexts of pricing models (Lim & Shanthikumar, 2007),

portfolio optimization (Glasserman & Xu, 2013), and discrete opti-

mization (Nakagawa, James, Rego, & Edirisinghe, 2013). Of particular

interest, Andersson et al. (2013) numerically demonstrate promising

performance characteristics of using entropy-based demand distri-

butions for ordering decisions; our work complements this insight

by theoretically connecting entropy and loss in a similar setting.

2. Entropy versus alternative demand uncertainty measures

Existing theoretical connections between uncertainty and sup-

ply/demand mismatch costs are often based on a measure of spread or

on stochastic ordering techniques. In this work we use entropy to con-

nect uncertainty and expected loss in a way that is intuitively satis-

fying, facilitates numerical evaluation of uncertainty’s effects on mis-

match costs, and is also theoretically justified. In addition, it enables

the exploration of uncertainty reduction without restricting expected

demand to remain constant as uncertainty is increased/decreased.

For example, a retailer reducing demand uncertainty by transitioning

from hi-lo pricing to everyday low pricing will most certainly see a

change in expected demand (see discussion in Lee, Padmanabhan, &

Whang, 1997).

Variance is arguably the most preferred measure of demand un-

certainty found in the inventory management literature (see for ex-

ample Kwak & Gavirneni, 2011; Ridder, Laan, & Salomon, 1998; Taylor

& Xiao, 2010). While intuitively, variance provides meaning regarding

the spread of a distribution and hence, uncertainty; problems arise
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when one tries to operationalize variance as a measure of uncertainty

(Jaynes, 2003, p. 345). In an often cited example, imagine a six-sided

die with a known bias such that the expected value of a roll is 4.5

instead of 3.5. How can we assign probabilities to the six outcomes

in this clearly under-specified problem? Following Jaynes’ logic, we

should pick the probability assignment implying maximal uncertainty

subject to the problem’s constraints. In other words, if every feasible

probability assignment were to be evaluated by a numerical measure

of uncertainty, then one chooses the assignment that has the largest

measurement; to choose otherwise would imply additional informa-

tion beyond that which is available. Thus, applying variance as an

uncertainty measure to the six-sided die problem, assign probability,

pi, by maximizing Var({pi}) = ∑6
i=1 pi(i − 9/2)2 subject to

∑6
i=1 pi = 1

and
∑6

i=1 ipi = 9/2. Solving this maximization problem, all probability

is placed on the outcomes of one and six with p1 = 0.3 and p6 = 0.7.

Unfortunately, this extreme placement of probabilities leads to dis-

satisfaction with the implied results. Should not some probability

remain on outcomes of 2, 3, 4, and 5? Variance as an uncertainty

measure leads to these counter-intuitive results and thus, maximal

uncertainty and maximal variance are not equal.

More intuitive results are found when entropy is used in place

of variance. Mathematically, we maximize − ∑6
i=1 pi log pi subject to∑6

i=1 pi = 1 and
∑6

i=1 ipi = 9/2. The Lagrange function is

L ≡ −
6∑

i=1

pi log pi − λ1

(
6∑

i=1

pi − 1

)
− λ2

(
6∑

i=1

ipi − 9/2

)
, (2)

where λ1 and λ2 are Lagrange multipliers and log is always the natural

logarithm in this paper. MaximizingL, we find maximum uncertainty

corresponds to p1 ≈ 5.4%, p2 ≈ 7.9%, p3 ≈ 11.4%, p4 ≈ 16.5%, p5 ≈
24.0%, and p6 ≈ 34.7%. Outcomes of 2–5 are no longer an impossibility

and much more in line with what common sense might dictate.

Besides entropy and variance (see Ebrahimi, Maasoumi, & Soofi,

1999, for further comparison of entropy and variance), other alter-

native uncertainty measures exist. A popular alternative to study the

effects of demand variability is to use stochastic ordering criteria

as done in Jemaï and Karaesmen (2005), Song (1994), Song, Zhang,

Hou, and Wang (2010), and Xu, Chen, and Xu (2010). In all of these

works, the authors confirm the intuition that uncertainty generally

leads to increased costs. Though, specific cases where larger uncer-

tainty is associated with reduced costs can also be found (Ridder

et al., 1998). The previously mentioned works use of stochastic or-

dering lead to qualitative insight, but do not facilitate numerical con-

nection of uncertainty and mismatch costs. Gerchak and Mossman

(1992) enable more numerically driven computations involving un-

certainty through use of the mean preserving transformation. Un-

fortunately, the mean preserving transformation, like the previously

mentioned stochastic ordering techniques, assumes uncertainty re-

duction never leads to changes in expected demand. Common sense

requires expected demand changes may indeed be a possible out-

come of a demand uncertainty reduction effort; otherwise, why do

it? Hence, the extant demand variability literature is largely void of

a method of measuring uncertainty that enables us to numerically

relate uncertainty and expected mismatch costs, is consistent with

common sense, and provides quantifiable evaluation of uncertainty’s

effect on expected loss.

Our use of entropy and its comparison to variance connotes math-

ematical risk. However, entropy is a measure of randomness and not

a direct measure of risk; entropy’s calculation is independent of pref-

erences among potential outcomes of demand. In contrast, risk mea-

sures, such as conditional value at risk (CVaR) or expected shortfall

(ES) (see Szegö, 2005, Section 5), always depend on the distribution

of losses. In this way, a reduction in a risk measure, by definition,

quantifies a reduction in the “likelihood of loss or less than expected

returns” (see McNeil, Frey, & Embrechts, 2010, chap. 1). Intuitively, a

reduction in uncertainty should also lead to a reduction in the likeli-

hood of less than expected returns, but this notion needs to be proved

and that is the goal of this work. In addition, this work’s focus on un-

certainty reduction enables a framework from which to value infor-

mation, whereas the more common risk-centric focus is better geared

toward optimizing ordering decisions (see related discussion in Choi,

Ruszczynski, & Zhao, 2011, and references therein).

3. Entropy and expected loss

In this paper, we quantify the relationship between expected sup-

ply/demand mismatch costs and entropy in the context of a general

stochastic inventory problem. We commence our analysis defining

maximal uncertainty and subsequently examine the effects of reduc-

ing uncertainty. Consider the loss matrix A ∈ R
+N×N

whose elements

represent the expected loss associated with N possible ordering deci-

sions and N possible outcomes (e.g. demand realizations). An ordering

decision j ∈ {1, 2, . . . , N} is chosen such that the loss, Lj(p), is mini-

mized

Lmin(p) = min
1≤j≤N

qT
j Ap, (3)

where demand distribution p = (p1, p2, . . . , pN) is unknown, and qj is

the jth unit (column) vector representing an order quantity of j units.

The determination of the optimal order quantity j∗ and associ-

ated lossLj∗(p)requires specification of the probability distribution p.

Since, we do not know p and any of an infinite number of N-tuple prob-

abilities (p1, p2, . . . , pN)may be valid representations of p, we find the

p consistent with maximal uncertainty via the principle of maximum

entropy: maximize
∑N

i=1 pi log pi, subject to p1 + p2 + · · · + pN = 1,

with the unique solution p1 = p2 = · · · = pN = 1/N. The correspond-

ing expected loss is Lmin(e/N) = qT
j∗ Ae/N where e is the vector con-

sisting of all 1s.

With the point of maximal uncertainty (i.e. entropy) defined, we

now investigate reducing levels of entropy. To do so, we define the

set of all probability distributions consistent with each possible level

of uncertainty:

S(h) ≡
{
(p1, . . . , pN) : H(p) = h,

N∑
i=1

pi = 1, 0 < pj < 1, j = 1, . . . , N

}
, (4)

where H(p) = H(p1, . . . , pN) = −∑N
i=1 pi log pi. For a given entropy

level h, Eq. (4) yields all N-tuples (p1, p2, . . . , pN) that are consistent

with this level of uncertainty. Based on the combinatorial derivation

of entropy provided in Niven (2007), all N-tuple’s of equal entropy are

considered equiprobable. The expected loss subject to the constant

entropy constraint H(p1, p2, . . . , pN) = h is therefore an average over

all possible N-tuples that lie on S:

E[h] ≡ E[Lmin(p); S(h)] =
∫

S(h)Lmin(p)ds∫
S(h) ds

. (5)

Note that Eq. (5) is actually an expectation of expected losses.

Some isoentropy surfaces for the N = 3 case are shown in Fig. 1.

For the general N-decision case, the constant h isoentropy surfaces are

N − 2 dimensional hypershells lying in the N − 1 dimensional simplex∑N
i=1 pi = 1, 0 < pi < 1. In Fig. 1(a) we see that for values of h near the

maximal value log 3, the isoentropy contour is approximately circular,

but for smaller values, they become more triangular. The contours are

also geometrically symmetric in p1, p2 and p3, as expected.

In Fig. 1(b), we show that for different values of h, the isoentropy

contour can pass through different “loss regions” (separated by the

thin red lines) with different optimal order quantities (OQs). Loss re-

gion D2 consists of all 3-tuples (p1, p2, p3)where an OQ of 2 gives the

smallest loss. In loss regions D1 and D3, OQ of 1 and 3 give the smallest
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