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a b s t r a c t

We develop a model for optimal location of retail stores on a network. The objective is to maximize the total

profit of the network subject to a minimum ROI (or ROI threshold) required at each store. Our model determines

the location and number of stores, allocation of demands to the stores, and total investment. We formulate a

store’s profit as a jointly concave function in demand and investment, and show that the corresponding ROI

function is unimodal. We demonstrate an application of our model to location of retail stores operating as

an M/M/1/K queue and show the joint concavity of a store’s profit. To this end, we prove the joint concavity

of the throughput of an M/M/1/K queue. Parametric analysis is performed on an illustrative example for

managerial implications. We introduce an upper bound of an optimal value of the problem and develop three

heuristic algorithms based on the structural properties of the profit and ROI functions. Computational results

are promising.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

One of the widely used objectives for network design is profit max-

imization. This approach can lead to higher investment (for example,

locating more stores) than a return-on-investment (ROI) criterion,

where ROI is the profit of an investment divided by the cost of the

investment. Starbucks’ failure in 2008 invokes the motivation to con-

sider an ROI criterion in addition to profit.

“Starbucks nearly tripled the number of stores worldwide, from

5886 in 2002 to 15,011 in 2007. But in the Great Recession of 2008,

it was hurt by rising costs, the cannibalization effects of years of

overexpansion, and stiff competition from McDonald’s and Dunkin

Donuts. By the end of 2008, Starbucks stock, once seemingly invinci-

ble, had declined by over 50 percent. 1000 employees were laid off

and 600 underperforming locations were closed in the United States.”

(Excerpted from the New York Times, May 25, 2010) Greer (2010) il-

lustrated the up-and-downs of the number of stores including the

plan of adding 500 new stores in 2010. While the stores closed in

2008 were company-owned, the growth in 2010 is based on franchis-

ing requiring no upfront investment. Starbucks just collected loyalty

streams paid by the stores.

This research was motivated by communications with one of

our partners in automobile industry, whose details are omitted per
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request. The automobile manufacturer considers ROI in location de-

cisions in a sequential manner. Finance first brings a ROI threshold

because ROI evaluates the efficiency of an investment from an in-

vestor’s perspective. While investment decisions are internally made,

ROI-incorporated location decisions can be aligned with some met-

rics interesting to external stakeholders. Examples include financial

ratios such as return on equity and return on asset. The ROI threshold

is translated into a minimum demand per site, which is then used for

an estimate on the number of dealerships to be located. Based on pop-

ulation data, the whole geographical regions are partitioned in a way

that the minimum demand requirement would be satisfied in each

region. Then, a 1-median problem is solved for a location within each

region since customers are sensitive to distance. When the minimum

demand requirement is over- or under-achieved in some regions, the

whole regions are partitioned with a smaller or larger number of

dealerships.

The partner’s sequential approach to location decisions is a simple

heuristic which is not even close to optimal. Thus, we develop an an-

alytical model simultaneously determining the decision variables: (i)

the number and location of stores, (ii) the allocation of demands to

the stores, and (iii) investments at the stores. The objective is to max-

imize the profit of a retail network subject to a ROI threshold required

at each store. The main purpose of this formulation is to deliver useful

insights by addressing the impact of a financial requirement such as

ROI threshold on the profit.

From a systems perspective, the interface between business func-

tions is critical to a firm’s success. However, in the literature, not much

attention has been paid to the link between operations and finance via
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ROI criteria. Myung, Kim, and Tcha (1997) considered a bi-objective

model for uncapacitated facility location where one objective is to

maximize the net profit and the other to maximize the profitability

(ROI) of the investment. Brimberg and ReVelle (2000) also proposed

a bi-criterion model which examines the tradeoff between the total

and investment costs. Brimberg, Hansen, Laporte, Mladenovic, and

Urosevic (2008) examined the objective of maximizing ROI, but im-

posed a minimum acceptable level on market share. They showed

that an optimal solution without market share constraints is given

by a single open facility, but one-facility location is rare in a retail

network. These models are intended for the location of manufac-

turing plants and determine assignment of plants to demand nodes.

In a retail environment, however, the traffic to a store is determined

rather by customer preference, for example, distance sensitivity. Such

customer choices are explicitly incorporated as “closest assignment”

constraints in our model.

Our analysis includes an application of our model to location of

retail stores operating as an M/M/1/K queue where the stochastic

nature of arrival and service processes in retail operations is explicitly

treated. Previous research in similar settings can be found in Berman,

Krass, and Wang (2006) and Berman, Huang, Kim, and Menezes (2007)

from which our model extends using ROI criteria. General problems of

finding optimal facility location and resource allocation in a stochastic

environment belong to the class of “Location Problems with Stochastic

Demands and Congestion” (Berman and Krass, 2002, chap. 11). Snyder

(2006) also provided a survey of location models with uncertainty.

We summarize key contributions. First, a more general model-

ing structure is introduced. In the previous location models with ROI

criteria, profit or cost is formulated as a linear function and ROI as a

linear fractional function. We generalize profit as a nonlinear function

and ROI as a nonlinear fractional function. The resulting formulation

inherits the complexity of classical location problems and the nonlin-

earity of profit and ROI functions adds more challenges. In particular,

the profit function in our model is jointly concave in demand and

investment, and can be applied to many practical settings where the

marginal benefit of an increasing demand or investment decreases.

Given these assumptions, we show the corresponding ROI function is

unimodal. Second, in our application to location of retail stores op-

erating as an M/M/1/K queue, we show the “queueing-based” profit

function is also joint concave. To this end, we prove the joint concavity

of the throughput of an M/M/1/K queue. This result is not available in

the queueing literature to the best of our knowledge. Third, we intro-

duce an upper bound of an optimal value of the problem and develop

three heuristic algorithms based on the structural properties of the

profit and ROI functions. While our framework was motivated by re-

tail networks, these results can be applied in other potential research

in network design. The first two contributions have implications for

various other areas in operational research.

Our framework does not explicitly incorporate competition be-

tween retail chains. Direct applications include monopolistic chains

with low competition. When high competition exists, the effect can

implicitly be captured by estimating parameters with cautions. For

example, market share can be used instead of total demand at any

demand point. Also customers’ distance sensitivity can be adjusted to

a high value (page 1016 in Berman et al., 2007).

The rest of the paper is planned as follows. In Section 2, we present

the problem framework and assumptions. We also formulate the

profit and ROI functions of a store, and show their structural proper-

ties. In Section 3, we formulate the problem and decompose it into

stores’ subproblems. We also show some structural properties of a

subproblem. In Section 4, we apply our model to location of retail

stores operating an M/M/1/K queue. An example of the problem is

illustrated in Section 5. Section 6 highlights some observations from

parametric analysis using the example in Section 5. In Section 7, we

introduce an upper bound of an optimal value of the problem and de-

velop three heuristic algorithms. Section 8 includes numerical results

from a computational experiment with random graphs. The conclu-

sion with suggested future research follows in Section 9.

2. The framework

A chain has retail stores located within the area represented by

a discrete undirected network G = (N, L), where N is the node set

with |N| = n and L is the link set. Customers are concentrated at the

nodes and demands originate from node i at the rate of wi per unit

time. The shortest distance between nodes i and j is denoted to be dij.

Customers from a node patronize the closest store. Customers’ choice

based on distance has been used in the location literature (Berman

et al., 2006; Gerrard and Church, 1996). As illustrated in our commu-

nications with an automobile manufacturer in the previous section,

businesses use distance as one of the key contributing factors in cus-

tomers’ preference. While this assumption is still realistic, different

or more refined versions are possible. For example, customers rank

facilities by travel and waiting times (Marianov, Rios, & Icaza, 2008).

Given the distance-based customers’ choice, for a given set X ⊂ N of

store locations, a demand node can be “assigned” to the closest node

with a located store. The set of nodes assigned to a store at node j

(or “store j”) is denoted to be Nj. Demands from a node, even though

assigned to the closest store, might still be “lost” due to the following

two sources (Berman et al., 2006):

1. Inconvenience. Customers from a node (i) are “sensitive” to dis-

tance and are lost when the store (j) they patronize is not close

enough. The function φ(dij)detailed below maps the likelihood of

customers from node i travelling to store j.

2. Incapacity. Customers from node i are sensitive to congestion at

store j (and also to service delays, overall appearance, layout, etc).

Even though a customer from node i travels to store j, upon arrival,

she might not join it due to congestion. The capacity of a store is

determined by the level of investment.

Given that node i is assigned to store j, let the fraction of customers

from node i travelling to store j be φ(dij) ≥ 0, where the “coverage

decay function” φ(d) is non-increasing. For numerical examples and

computational experiments in this paper, we use a piecewise linear

convex function, φ(d) = max{1 − d/(θdmax), 0} (Berman et al., 2007),

where dmax is the largest shortest distance of G and θ > 0 is a constant

representing customers’ distance sensitivity. For example, a larger

value of θ can be used under higher competition as noted in the

previous section. See Berman, Krass, and Drezner (2003) for more

examples of φ(d). However, a choice of φ(d)does not affect the results

in the remainder of this paper. From the definition of φ(d), we define

below the unit-time demand of store j

λj =
∑
i∈Nj

wiφ(dij)

which represents the average number of customers arriving at store

j per unit time.

The decision maker determines the set X of store locations and

investment (or variable investment cost) Ij ≥ 0 of a store at node j.

Note that the number of stores (m = |X|) is not pre-specified. There

is also a fixed setup cost S ≥ 0 for locating a store. The objective is to

maximize the total profit of all stores located on the network subject

to a pre-specified ROI threshold α required at each store. The full

formulation of this problem is presented in the next section. We first

develop the profit and ROI functions of a store, and investigate their

structural properties in this section.

Suppose a store is located at some node with some λ and I (drop-

ping the index “j”). We assume that the “throughput” or unit-time

sales of the store, T(λ, I), is a non-decreasing and jointly concave

function of λ and I, with the boundary conditions T(λ, 0) = 0 and

T(0, I) = 0. Examples include the Cobb–Douglas function T(λ, I) =
Aλβ Iγ , where 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, and β + γ ≤ 1. Let p and c be
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