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This paper proposes a flexible stochastic cost frontier panel data model where the technology parameters are

unknown smooth functions of firm- and time-effects, which non-neutrally shift the cost frontier. The model

decomposes inefficiency into firm and time-specific components and productivity change into inefficiency

change, technical change and scale change. We then apply the proposed methodology to the Norwegian

salmon production data and analyze technical efficiency as well as productivity changes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The estimation of technical inefficiency was pioneered by Aigner,

Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977) in

a stochastic frontier (SF) production function framework. Since then

the SF model has been extended in many directions accommodat-

ing both cross-sectional and panel data. The models use both primal

and dual approaches such as the production, input or output distance

functions (Coelli & Perelman, 1999). Although most of the models use

parametric functional forms, there are SF models that deal with non-

parametric formulations of the frontier function (Fan, Li, & Weersink,

1996; Kumbhakar, Park, Simar, & Tsionas, 2007, among others). Sun

and Kumbhakar (2013) used a semiparametric model to introduce

flexibility to the parametric production frontier model. More recently,

attention has been paid to the non-traditional inputs, i.e., firm charac-

teristics, policy variables as well as factors that describe the environ-

ment in which production takes place, in addition to the traditional

inputs such as capital and labor. These non-traditional inputs or en-

vironmental factors are the exogenous factors that may neutrally or

non-neutrally shift the frontier of the technology.

The role of the environmental factors have been recognized in

the literature using both parametric and semiparametric models. For
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example, Bhaumik, Kumbhakar, and Sun (2014) considered a model

in which the environmental variables shift the frontier neutrally by

expressing the intercept as a function of the non-traditional inputs.

On the other hand, Zhang, Sun, Delgado, and Kumbhakar (2012) con-

sidered a model in which the environmental variables shift the pro-

duction function non-neutrally by expressing both the intercept and

slope coefficients as functions of R&D. More specifically, Zhang et al.

(2012) estimated these coefficients as unknown smooth functions

of R&D. The unknown functions allow the environmental variables

to affect the technology in a flexible manner without imposing any

specific form in their effect on the production frontier.

In this article we focus on the semiparametric cost frontier model

to estimate and decompose productivity and efficiency. The advan-

tage of the cost function approach is that it explicitly recognizes

endogeneity of the input variables. To separate firm effects from

time-varying technical inefficiency, we consider a panel data cost

frontier model where the coefficients of the cost function are allowed

to vary over time in a flexible manner. To do so, the slope coefficients

of the cost function are specified as nonparametric functions of the

time trend. Inefficiency is assumed to be neutral and is captured by

the intercept which is allowed to vary over time and across firms

in a flexible manner. Thus, firm- and time-effects on inefficiency are

completely flexible. Estimation of the model is done in three steps.

The semiparametric cost function is estimated in the first step. In-

efficiency is estimated in the second step in which we separate the

firm-effects from both persistent and time-varying technical ineffi-

ciency (Kumbhakar, Lien, & Hardaker, 2014). In doing so, we make

distributional assumptions on the inefficiency components as well as
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on the random firm-effects. Finally, we decompose and estimate the

inefficiency and productivity change components based on the esti-

mated cost frontier from the first two steps. In particular, inefficiency

is decomposed into time-invariant and time-varying components,

and productivity change is decomposed into various components in-

cluding the scale change, technical change, and technical inefficiency

change. Although firm-effects and persistent inefficiency do not af-

fect productivity directly (i.e., they vanish upon differentiation with

respect to time), omission of these effects is likely to bias the other

parameters and hence productivity and its components. As an em-

pirical example, we use a farm-level Norwegian salmon production

data set. This is an unbalanced panel data set that covers 442 farms

over 14 years. Fish farming is a highly relevant industry to study as a

future increase in the global production of healthy proteins has to rely

on innovations and productivity growth in aquaculture. Many aqua-

culture sectors are young or infant industries where one can expect

substantial farm heterogeneity in terms of technology, efficiency and

productivity. It is important to understand quantitatively the sources

of productivity differentials across firms and their development over

time, as this can be used in design of policies aimed at increasing

productivity, e.g., public extension services and technology transfer

programs. The model framework proposed in this paper enables us

to perform these kinds of analyses, as it allows a rich and flexible

decomposition of sources of firms’ productivity and its growth over

time.

The rest of this paper is organized as follows. Section 2 ex-

plains in detail how to estimate the semiparametric stochastic cost

frontier model and to decompose the inefficiency and productivity

within this modeling framework. Section 3 describes the data set

used for the evaluation of the model. Section 4 reports and interprets

the estimation results, and Section 5 concludes.

2. Semiparametric stochastic cost frontier model

The cost function that we consider in this article is:

ln Cit = θ(i, t)+ φ(t)′ ln Bit + vit (1)

where the total cost, Cit, is the cost of variable inputs for firm i in year

t, Bit is a vector of covariates (output and input prices), the intercept,

θ(i, t), is an unknown function of firm- and time-effects which cap-

tures both persistent and time-varying inefficiency (to be specified

later), the slope coefficient vector, φ(t), is an unknown function of

time trend, and vit is the noise term. We call (1) a semiparametric

stochastic cost function because the structure of the cost function is

parametric (Cobb-Douglas or translog depending on the construction

of the Bit variables), but the coefficients are nonparametric functions

of time trend. In principle, they can be functions of a vector of envi-

ronmental variables (call them z). However, the cost frontier function

is something that is common to all firms in a given year. That is, if

two firms have the same values of all the covariates (input prices and

output), their optimal (minimum) cost will be the same. If the cost

function coefficients are functions of the z variables, the cost frontier

will depend on z; and furthermore, if these z variables vary across

firms, the cost frontier will be firm-specific. This is counterintuitive,

especially if one thinks of the cost frontier as the benchmark technol-

ogy, the value of which changes with z but not the technology itself.

We avoid this problem by letting the technology parameters change

with only time but not across firms. By doing this, we allow the cost

frontier to change over time nonparametrically so that it is the same

for all firms in any given year. More specifically, we define the cost

frontier as:

ln Cit = α(t)+ φ(t)′ ln Bit + mit + vit, (2)

where α(t) = mini θ(i, t) and mit = θ(i, t)− α(t). Note that the

above frontier function coefficients are invariant across firms; and

therefore, we have a separate frontier for each t, unless all the

functional coefficients do not vary over time (which is a testable

hypothesis).

We start with a Cobb-Douglas type stochastic cost frontier model

with panel data:

ln Cit = θ(i, t)+
Q∑

q=1

βq(t) ln Yqit

+
K∑

k=1

δk(t) ln Wkit +
P∑

p=1

γp(t) ln Qpit + vit, (3)

where Cit is the total cost, Yqit is the qth output, Wkit is the kth in-

put price, and Qpit is the pth quasi-fixed input (e.g., capital), for the

ith firm at time t. The i and t inside the functional parameters cap-

ture firm- and time-effects in a fully flexible manner. The random

shocks vit are assumed to be distributed with mean zero and variance

σ 2
v . Furthermore, it is assumed to be independent of firm- and time-

effects as well as ln Yq, ∀q, ln Wk, ∀k, and ln Qp, ∀p. The functional

coefficients θ(i, t), βq(t), ∀q, δk(t), ∀k, and γp(t), ∀p, are the intercept

and slope coefficients. It is worth emphasizing the economic meaning

of the functional coefficients. The time-varying βq(t)are cost elastici-

ties with respect to outputs. Similarly, cost elasticities with respect to

input prices are δk(t) which also vary over time. Both βq(t) and δk(t)
should be non-negative for all q, k and t. Finally, the cost elasticities

with respect to quasi-fixed factors, γp(t), can be either positive or neg-

ative and the sign can also change over time. We will discuss this issue

in the empirical section of the paper. These unknown functions can

be estimated using the kernel-based nonparametric method, which

will be explained in more details in the following section.

2.1. Estimation of functional coefficients

Since the cost function is homogeneous of degree one in input

prices and this property has to hold at every data point, we impose

this property before estimation of the cost function. Such a restriction

can be imposed by using any one of the input prices as a numeraire

and express all other input prices relative to the numeraire. Using

W1, the price of the first input as the numeraire, we re-write the cost

function as:

ln C̃it = θ(i, t)+
Q∑

q=1

βq(t) ln Yqit +
K∑

k=2

δk(t) ln W̃kit

+
P∑

p=1

γp(t) ln Qpit + vit, (4)

where C̃it = Cit/W1it, and W̃kit = Wkit/W1it, ∀k = 2, . . . , K.

The cost function in (4) is similar to the semiparametric smooth

coefficient (SPSC) model (Fan & Zhang, 1999; Li, Huang, Li, & Fu, 2002).

However, the traditional SPSC model assumes that all the coefficients,

the intercept and slopes, are functions of the same covariates. In our

case, the intercept is a function of firm- and time-effects while the

slopes are functions of time only.

For estimation we perform a Robinson (1988) type transformation

and re-write (4) as:

ln C̃∗
it =

Q∑
q=1

βq(t) ln Y∗
qit +

K∑
k=2

δk(t) ln W̃∗
kit +

P∑
p=1

γp(t) ln Q∗
pit + vit,

(5)

where ln C̃∗
it

= ln C̃it − E(ln C̃it|i, t), ln Y∗
qit

= ln Yqit − E(ln Yqit|i, t), ln

W̃∗
kit

= ln W̃kit − E(ln W̃kit|i, t), and ln Q∗
pit

= ln Qpit − E(ln Qpit|i, t). The

conditional expectations, E(ln C̃it|i, t), E(ln Yqit|i, t), E(ln W̃kit|i, t), and
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