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a b s t r a c t

This paper analyzes technical efficiency and the value of the marginal product of productive inputs vis-a-

vis pesticide use to measure allocative efficiency of pesticide use along productive inputs. We employ the

data envelopment analysis framework and marginal cost techniques to estimate technical efficiency and

the shadow values of each input. A bootstrap technique is applied to overcome the limitations of DEA and

helps to estimate the mean and 95 percent confidence intervals of the estimated quantities. The methods

are applied to a sample of vegetable producers in Benin over the period 2009–2010. Results indicated that

bias corrected technical efficiency scores are lower than the initial measures and the former estimates are

statistically significant. The application results show that vegetable producers are less efficient with respect

to pesticide use than other inputs. Also, results suggest that pesticides, land and fertilizers are overused.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Unlike productive inputs (e.g. fertilizers or improved crop vari-

eties) which have a more straightforward relationship with higher

productivity and for which there are well-established methods and

models that can be used to predict their effect on crop yields, pesti-

cides do not have a direct impact on crop yields, other than limiting

the possible adverse effects of pests, and are extremely diverse with

nearly a thousand active ingredients currently in use. Vegetable pro-

duction is impacted by the presence of large range of insects, implying

increasing use of pesticides. Williamson, Ball, and Pretty (2008) indi-

cated that the relative costs of pesticides have risen sharply in recent

years, implying that farmers continuously need to adapt the use of

pesticides in order to avoid over- or under use. Insights in the value

of the marginal product (VMP) of pesticides in vegetable production

and the impact of other inputs on the VMP of pesticides can help in

determining the optimal use of pesticides.

Parametric and non-parametric approaches have been used to

study the value of the marginal product of pesticides. Oude Lansink

and Carpentier (2001) and Skevas, Stefanou, and Oude Lansink (2013)

adopted a parametric approach to measuring the VMP of pesticides,
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distinguishing damage abatement inputs and productive inputs. Both

studies report overuse of pesticides. Non-parametric approaches are

an attractive alternative to parametric approaches, since a functional

form of the distance or production function does not have to be as-

sumed. Furthermore, the non-parametric Data Envelopment Analysis

(DEA) approach allows for simultaneous measurement of technical

efficiency and the VMPs of inputs. However, despite their clear ad-

vantages, non-parametric approaches have rarely been used in the lit-

erature to address this question. Oude Lansink and Silva (2004) used

DEA to estimate the VMP of pesticides and to investigate the impact of

productive inputs on the VMP of pesticides. Skevas, Oude Lansink, and

Stefanou (2012) use DEA to represent a production technology that

considers both pesticides’ dynamic impacts and production uncer-

tainty (accounted through variability in climatic conditions) in their

effort to investigate the performance of Dutch arable farms. Their

results show that ignoring the effects of variability in production

conditions may lead to an overestimation of farmers’ inefficiency.

A shortcoming of previous nonparametric approaches is their failure

to perform statistical inference on the estimated VMP’s of pesticides.

Recently bootstrap methods (Simar & Wilson, 2008) have been pro-

posed in the literature to enable statistical inference in DEA models.

However, these methods have not yet been applied in the estimation

of VMPs from DEA models.

Against the background of the foregoing, the objective of this study

is to estimate technical efficiency and the shadow price values (VMP)
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of pesticides and other inputs in vegetable production. The VMPs

are estimated from different DEA models, each determining technical

efficiency and VMP on a different part of the frontier. Statistical in-

ference on technical efficiency and VMPs is obtained using a smooth

bootstrap procedure. Also, the impact of different inputs on the VMP

of pesticides is investigated. This paper contributes to the literature

by being the first to employ a bootstrap method for performing sta-

tistical inference of technical efficiency and for the value of marginal

products (VMPs) in order to overcome the main drawback of DEA

approach. The method is applied to vegetable production in Benin.

The remainder of this paper is organized as follows. Section 2

presents the DEA models and the bootstrap technique to perform

statistical inference on the VMPs of pesticides and other inputs. The

case study of vegetable production in Benin is described in Section 3,

followed by the presentation of the empirical results in Section 4.

Concluding remarks follow in the last section.

2. Input distance function with damage abatement inputs

2.1. DEA models incorporating damage abatement inputs

Consider a sample of N farms which produce Q outputs from P pur-

chased productive inputs and A purchased damage abatement inputs

(pesticides). Let y ∈ �Q
+, x ∈ �P+, and z ∈ �A+ denote vectors of non-

negative outputs, non-negative productive inputs and non-negative

damage abatement inputs, respectively. The production technology

for a decision making unit (DMU) is fully represented by the input

requirement set:

L(y) = {(x, z) ∈ �P
+ × �A

+|(x, z) can produce y} (1)

which represents the set of all feasible combinations of vectors of

productive and damage abatement inputs given a vector of outputs y.

A non-parametric representation of L(y) is:

L (y) = {
(x, z) : Y ′λ ≥ yi, X′λ ≤ xi, Z′λ ≤ zi, I′λ = 1, λ ≥ 0

}
(2)

where Y is the (N × Q) matrix of observed outputs, yi is the vector of

observed outputs of farm i, X is the (N × P)matrix of observed produc-

tive inputs, xi is the vector of productive inputs used by farm i, Z is the

(N × A) matrix of observed damage abatement inputs, zi is the vec-

tor of damage abatement inputs used by farm i; λ is a (N × 1) vector

of intensity variables (farm weights) and I is the (N × 1) unit vec-

tor. We assume that (1) satisfies the standard regularity conditions:

possibility of inactivity, no free lunch, strong input and output dispos-

ability,1 closedness of L(y) and variable returns to scale (VRS) (Färe,

1988, p. 35; Färe & Grosskopf, 1990; Fukuyama & Weber, 2002). The

VRS condition (I′λ = 1) ensures that increased amounts of inputs do

not necessarily lead to a proportional increase of the amount of out-

puts. Technical efficiency is defined as the ability of a farm to use the

minimum feasible amounts of productive and/or damage abatement

inputs to produce a given level of output. Hence technical efficiency

is measured relative to production possibilities characterized by L(y).
The Shephard input distance function is defined as:

DI (x, z, y) = sup
{
γ > 0 :

(
x/γ , z/γ

) ∈ L (y)
}

(3)

where γ is the input sub-vector space technical efficiency scores for

the DMU. The input distance function can reflect joint production of

multiple outputs, while duality between the input distance function

and the cost function allows retrieval of the input shadow prices.

In order to compute the technical efficiency of an individual input,

1 Since we applied our models to small scale farms we maintain strong disposability

assumption for fixed inputs because strong disposability implies weak disposability,

but the converse does not hold (see Färe, Grosskopf, & Lovell, 1994, p. 38 for details).

We experimented by assuming weak disposability of fixed inputs as in Skevas et al.

(2012) and found that the technical inefficiency scores are relatively close but greater

than or equal to the ones obtained from imposing strong disposability.

sub-vector technical efficiency measures are introduced to generate

technical efficiency measures of a subset of inputs rather than for the

entire vector of inputs, holding all other inputs and outputs constant.

Four input-oriented models are constructed for measuring technical

efficiency, i.e. they contract inputs in four different directions.

The first model (Model 1) measures technical efficiency by radi-

ally contracting all productive inputs (fixed and variable inputs) and

damage abatement inputs equiproportionately, while keeping out-

puts constant. In this model, we assumed that producers can adjust

all inputs. This standard radial measure is incapable of identifying

the technical efficiency of individual input use, since such a mea-

sure treats the contribution of productive and abatement inputs to

technical efficiency equally. The technical efficiency score obtained

from this model is a radial measure and is restrictive in that it as-

sumes that inefficient producers can be brought to the frontier only

by shrinking all inputs. In other words, this model assumes that a

technically inefficient producer will have the same degree of input

overuse for all inputs. The second model (Model 2) measures techni-

cal efficiency by radially contracting only variable productive inputs

equiproportionately, given the fixed inputs, the damage abatement

inputs and outputs. The third model (Model 3) measures technical ef-

ficiency by radially contracting all damage abatement inputs in equal

proportions, given the productive inputs (variable and fixed inputs)

and the output level. The fourth model (Model 4) is a variation of the

Russell technical efficiency measure that allows for non-proportional

contractions in each input. This model allows for non-proportional

reductions in each subset of inputs, allowing for different technical

efficiency scores of productive inputs and damage abatement inputs.

This is equivalent to the non-radial notion of input technical effi-

ciency, as discussed by Kopp (1981). The main purpose of having four

different input-oriented models (radial and non-radial) is to have four

separate sets of shadow price calculations of pesticide and productive

inputs at four different points on the production frontier. This proce-

dure was also applied by Ball, Lovell, Nehring, and Somwaru (1994)

and Oude Lansink and Silva (2004). It helps to show the variation in

the results according to each point on the frontier. The general form

of the four models is given by:

min
γi,λ

γji

s.t.
Yλ ≥ yi

Xλ ≤ γkixi

Zλ ≤ γlizi

Iλ = 1
λ ≥ 0

(4)

where γk and γl are the input sub-vector space technical efficiency

scores for farm i. The specification of each of the four models is sum-

marized in Table 1.

Table 1

Specification of the models.

Models Technical efficiency Objective

for choice variables function

Model 1:

Radial technical efficiency in the full

input space

γki = γli = γ1i min
γ1i ,λ

γ1i

Model 2:

Radial technical efficiency in the

productive input subspace

γki = γ2i , γli = 1 min
γ2i ,λ

γ2i

Model 3:

Radial technical efficiency in the

damage abatement input subspace

γki = 1, γli = γ3i min
γ3i ,λ

γ3i

Model 4:

Non-radial technical efficiency

measure

γki �= γli min
γki ,γli ,λ

(γki + γli)/2
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