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a b s t r a c t

A network needs to be constructed by a server (construction crew) that has a constant construction speed

which is incomparably slower than the server’s travel speed within the already constructed part of the

network. A vertex is recovered when it becomes connected to the depot by an already constructed path. Due

dates for recovery times are associated with vertices. The problem is to obtain a construction schedule that

minimizes the maximum lateness of vertices, or the number of tardy vertices. We introduce these new prob-

lems, discuss their computational complexity, and present mixed-integer linear programming formulations,

heuristics, a branch-and-bound algorithm, and results of computational experiments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider the type of network construction problems intro-

duced in Averbakh (2012) and Averbakh and Pereira (2012). The base

model used in Averbakh and Pereira (2012) and in this paper is as

follows. A transportation network needs to be constructed by a server

(construction crew) that is initially located at one of the vertices (the

depot). The server can build edges of the network with a constant

speed, and can travel within the already constructed part of the net-

work with infinite speed (in practice, travel times are typically negli-

gible with respect to construction times). It is required to develop a

construction schedule (an order of building the edges) that minimizes

some scheduling objective that is a function of the recovery times of

vertices, where the recovery time of a vertex is the time when the ver-

tex is reached by the server for the first time and becomes connected

to the depot.

As discussed in Averbakh and Pereira (2012), this base model

is applicable in a variety of application settings, most notably: (a)

when an extension of an existing transportation network needs to

be constructed (then, the depot represents the existing network),

and (b) in emergency situations when some local part of a trans-

portation network (e.g., subway system, road/railway network, mine

system, etc.) has been damaged/destroyed by a disaster (e.g., flood,

earthquake, hurricane, landslide, etc.) or terrorist activity that led to

disconnection of some vertices/parts of the network from the rest
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of the network, and it is required to plan restoration of the dam-

aged/destroyed edges to restore access to the disconnected vertices

(then, the depot represents the survived main network). For a dis-

cussion of these applications, the reader is referred to Averbakh and

Pereira (2012).

The specific problem studied in Averbakh and Pereira (2012) was

to minimize the sum of the (weighted) recovery times of the ver-

tices (the Flowtime Network Construction Problem). In this paper,

we assume that vertices have due dates for recovery, and consider

two problems: minimizing the maximum lateness of the vertices and

minimizing the number of tardy vertices. These models are particu-

larly important in emergency situations when some vertices are dis-

connected from the main network as a result of a disaster or terrorist

activity, and people/equipment can be trapped there. A deadline or

due date for recovery of a vertex may represent a self-sustainability

limit of the vertex, i.e., a limit on the time that the vertex can re-

main disconnected from the rest of the network without risk to peo-

ple/equipment trapped there. We introduce these problems, discuss

their computational complexity, and present mixed-integer linear

programming (MILP) formulations, heuristics, a branch-and-bound

algorithm, and results of computational experiments based on ran-

domly generated instances and instances generated from data on

infrastructure restoration works after the 2010 Chilean earthquake

(Chilean instances). The experiments show that our branch-and-

bound algorithm outperforms CPLEX applied to available MILP for-

mulations. For example, the branch-and-bound algorithm was able

to solve all Chilean instances to proven optimality within seconds,

while CPLEX applied to our MILP formulations ran out of memory for

most of the Chilean instances.
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We note that network construction problems such as in Averbakh

(2012) and Averbakh and Pereira (2012) and in the present paper com-

bine network design and scheduling elements. They also have some

routing aspects, in the following sense: (a) The problems are the lim-

iting case of the routing-scheduling problems where the travel speed

of the server is finite but very large with respect to the construction

speed; (b) at any instant, the only edges available for construction to a

server are those edges that are adjacent to the current position of the

server in the modified network where the already constructed parts

are shrunk to points, and thus the problems can be viewed as routing-

scheduling problems in a dynamically changing network. Property (b)

is particularly important in multi-server/multi-depot settings such as

those considered in Averbakh (2012); the polynomial algorithms for

path networks in Averbakh (2012) heavily use this property.

Let us give a brief overview of related work where issues of

scheduling construction/restoration activities in a network were

studied. Guha, Moss, Naor, and Schieber (1999) considered the power

outage recovery problem where it is required to restore connectiv-

ity between customer vertices and generator vertices in an electric

power network when some relay vertices fail. The repair of the failed

vertices occurs in stages where due to a budget constraint only a sub-

set of failed vertices can be repaired in every stage, and the goal is to

minimize the total weighted waiting time of disconnected customers.

For this problem, Guha et al. (1999) presented a number of theoretical

approximation results.

Averbakh (2012) showed that a very broad class of network con-

struction problems with multiple servers and depots is solvable in

polynomial time if the underlying network is a path.

Nurre, Cavdaroglu, Mitchell, Sharkey, and Wallace (2012) consider

integrated network design and scheduling (INDS) problems where

capacitated arcs are installed in a network to increase the maximum

flow that can go through the network, and it is required to schedule

the arcs’ installation on a set of parallel identical work groups. The

objective is to maximize the cumulative (over a finite time horizon)

weighted flow through the network. An integer programming formu-

lation, valid inequalities, and heuristic dispatching rules are proposed.

Cavdaroglu, Hammel, Mitchell, Sharkey, and Wallace (2013) consider

similar problems involving a set of interdependent networks. Nurre

and Sharkey (2014) consider INDS problems where the performance

of the network is evaluated based on such characteristics as the max-

imum flow value, minimum cost flow value, shortest path length

(with single or multiple destinations), and the minimum spanning

tree length. They prove that the considered problems are NP-hard,

and present a heuristic algorithmic framework based on dispatching

rules. The INDS problems considered in Nurre et al. (2012), Nurre and

Sharkey (2014) and Cavdaroglu et al. (2013) also combine network

design and scheduling decisions; they are general and can capture a

variety of settings and objectives including some connectivity-based

objectives, e.g., the sum of the weighted recovery times of vertices.

However, the specific INDS models considered in Nurre et al. (2012),

Nurre and Sharkey (2014) and Cavdaroglu et al. (2013) do not seem

directly suitable for representing the objectives considered in the

present paper, i.e., the maximum lateness or the number of tardy

vertices, as they are based on the overall network characteristics (the

maximum flow value, the minimum spanning tree length, etc.), rather

than on the lateness of individual vertices with respect to their due

dates. From the modeling perspective, a difference between the INDS

problems from Nurre et al. (2012), Nurre and Sharkey (2014) and

Cavdaroglu et al. (2013) and the network construction problems from

Averbakh (2012), Averbakh and Pereira (2012) and the current paper

is that the models from Nurre et al. (2012), Nurre and Sharkey (2014)

and Cavdaroglu et al. (2013) do not assume that the servers (con-

struction crews) can travel only in the already constructed parts of

the network. This makes the solution spaces different. From the solu-

tion perspective, the difference is often not important in the single-

server/single-depot case (Averbakh & Pereira, 2012), but is important

in multiple-server/multiple-depot case as it affects optimal solutions

and the optimal objective value (Averbakh, 2012).

Elgindy, Ernst, Baxter, Savelsbergh, and Kalinowski (2014) and

Engel, Kalinowski, and Savelsbergh (2013) study incremental network

design problems where at each stage one edge is installed, and the

objective is to minimize the total length of the shortest path (Elgindy

et al., 2014) or the minimum spanning tree (Engel et al., 2013) over

all stages. Connectivity issues do not arise in these problems since in

the initial network the vertices of interest are assumed to be already

connected. Kalinowski, Matsypura, and Savelsbergh (2015) consider

similar problems where the objective is to maximize the cumulative

maximum flow in the network over all stages. This problem can be

viewed as a special case of the problem considered in Nurre et al.

(2012).

The structure of the paper is as follows. In Section 2, we formally

introduce our problems. In Section 3, we study their computational

complexity. In Section 4, we develop MILP formulations. In Section 5,

we describe heuristics used for obtaining initial solutions, and de-

velop lower bounds to be used in a branch-and-bound approach. In

Section 6, we present some structural results, and in Section 7 we de-

scribe a branch-and-bound algorithm. Results of computational ex-

periments are discussed in Section 8. Some conclusions are stated in

Section 9.

2. Problem formulation

Let G = (V, E) be a connected network with the set of vertices

V = {1, 2, . . . , n} and the set of undirected edges E. To avoid confusion,

nodes of the network G will always be called vertices, reserving the

term “nodes” to nodes of branch-and-bound search trees. For each

edge {i, j} ∈ E, let cij > 0 be the length of the edge, cij < +∞. The edges

of the network represent connections (e.g., roads) that have to be

constructed. A server (construction team) that is initially located at

vertex 1 (the depot) can build edges with the speed of 1 unit of length

per unit of time. The server can travel within the already constructed

(connected) part of the network with infinite speed; that is, at any

time, the server can immediately relocate to any point of the already

constructed portion of the network. The server starts working at time

0. The instant Ci when the server reaches a vertex i for the first time

is called the recovery time of the vertex; this is the instant when the

vertex becomes connected to the depot. A due date di is associated

with each vertex i > 1; vertex 1 (the depot) does not have a due date.

We assume that vertices are indexed according to non-decreasing

due dates, i.e. d2 ≤ d3 ≤ · · · ≤ dn. Value Ci − di is called the lateness of

vertex i. A vertex with positive lateness is called a tardy vertex. Our

goal is to find a possible schedule of constructing the edges so as to

minimize a scheduling objective. This problem will be referred to as

Problem L if the objective is to minimize the maximum lateness of

the vertices, and Problem T if the objective is to minimize the number

of tardy vertices. Let Z∗
L and Z∗

T be the optimum objective values for

Problems L and T, respectively.

Edges constructed before all vertices have been recovered are

called essential. Clearly, there is an optimal solution without preemp-

tion, where the server does not interrupt construction of an edge once

it has been started. After a choice of essential edges has been made,

the order of building other edges is not important. Observe that there

is always an optimal solution where the essential edges form a span-

ning tree, which allows us to structure the set of feasible solutions as

follows: it is required to choose a spanning tree of essential edges and

an optimal order of constructing the essential edges.

We also discuss Problem F where it is required to find a solu-

tion that meets all due dates, or to show that no such solutions exist.

This problem corresponds to the situation where the due dates are

interpreted as strict deadlines. Clearly, to solve Problem F, it is suffi-

cient to solve Problem L or T and check whether the optimal objective

value is greater than 0. However, we will see that often Problem F is
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