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a b s t r a c t

The Capacitated Vehicle Routing Problem is a much-studied (and strongly NP-hard) combinatorial optimiza-

tion problem, for which many integer programming formulations have been proposed. We present two new

multi-commodity flow (MCF) formulations, and show that they dominate all of the existing ones, in the sense

that their continuous relaxations yield stronger lower bounds. Moreover, we show that the relaxations can

be strengthened, in pseudo-polynomial time, in such a way that all of the so-called knapsack large multistar

(KLM) inequalities are satisfied. The only other relaxation known to satisfy the KLM inequalities, based on set

partitioning, is strongly NP-hard to solve. Computational results demonstrate that the new MCF relaxations

are significantly stronger than the previously known ones.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Vehicle Routing Problems (VRPs) are classic problems in operational

research and logistics, and have also received a great deal of attention

from the combinatorial optimization community. A huge number of

papers have been written on the theory and applications of VRPs,

and on exact and heuristic solution methods for them (see, e.g., the

edited volumes Ball, Magnanti, Monma, & Nemhauser, 1995; Golden,

Raghavan, & Wasil, 2008; Toth & Vigo, 2001.)

This paper is concerned with the Capacitated VRP (CVRP), which

Dantzig and Ramser (1959) defined as follows. A fleet of identical vehi-

cles, with limited capacity, is located at a depot. There are n customers

that require service. Each customer has a known demand. The cost

of travel between any pair of customers, or between any customer and

the depot, is also known. The task is to find a minimum-cost collec-

tion of vehicle routes, each starting and ending at the depot, such that

each customer is visited by exactly one vehicle, and no vehicle visits

a set of customers whose total demand exceeds the vehicle capacity.

Letchford and Salazar-González (2006) surveyed and compared

several integer programming formulations of the CVRP. These in-

cluded the so-called two- and three-index formulations, the single-,

two- and multi-commodity flow formulations, and the set partition-

ing formulations. At present, the most successful exact algorithms

for the CVRP are based on the two-index formulation (e.g., Lysgaard,
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Letchford, & Eglese, 2004) or on set partitioning formulations (e.g.,

Fukasawa et al., 2006, Baldacci, Christofides, and Mingozzi (2008)).

One way to measure the strength of an alternative formulation is to

project the feasible region of its continuous relaxation into the space

of the natural (two-index) formulation. Gouveia (1995) showed that,

in the case of the single-commodity flow formulation, the projection

satisfies a family of valid inequalities now known as generalized large

multistar (GLM) inequalities. Letchford and Salazar-González (2006)

showed that the projection of the set partitioning formulation (with

only elementary routes permitted) satisfies the so-called knapsack

large multistar (KLM) inequalities, defined by Letchford, Eglese, and

Lysgaard (2002). The KLM inequalities include the GLM inequalities

and the so-called subtour elimination (SE) inequalities as special cases.

Unfortunately, the continuous relaxation of the set partitioning for-

mulation is itself strongly NP-hard to solve.

This paper has four main contributions. First, we show how to

strengthen the two best multi-commodity flow (MCF) formulations,

by adding only a polynomial number of additional constraints. Sec-

ond, we show that the projections of our two formulations satisfy

the GLM and SE inequalities. Third, we show that the new formu-

lations can be further strengthened, in pseudo-polynomial time, in

such a way that all of the KLM inequalities are satisfied. (We remark

that no polynomial or pseudo-polynomial time separation algorithm

is known for the KLM inequalities themselves.) Finally, we present

some computational results that demonstrate that the new MCF for-

mulations are significantly stronger than the previously known ones.

As mentioned above, the current best algorithms for the CVRP

are based on two-index or set partitioning formulations. The contri-

bution of this paper may therefore appear to be only of theoretical
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interest. We would like to point out, however, that there exist vari-

ants of the CVRP for which it is natural, or even essential, to use

additional commodity-flow variables. This includes, for example, the

problem described by Hernández-Pérez and Salazar-González (2009),

in which several distinct products have to be picked up and delivered

at various locations, and the one described by Kara, Kara, and Yetis

(2007), in which the cost of traversing an arc is an increasing function

of vehicle load. Potentially, our results could be used to derive better

formulations and algorithms for such problems.

The structure of the paper is as follows. The literature is reviewed

in Section 2. The strengthened MCF formulations are presented and

analysed in Section 3. The result on KLM inequalities is given in

Section 4. Some computational results are given in Section 5, and

some concluding remarks are made in Section 6.

Throughout the paper, we use the following notation. We have

a complete directed graph G with node set V = {0, 1, . . . , n} and arc

set A. Node 0 represents the depot, and nodes 1, . . . , n represent cus-

tomers. We sometimes write Vc for V \ {0}, the set of customer nodes.

The (positive integer) demand of customer i ∈ Vc is qi. The (posi-

tive integer) vehicle capacity is Q . The (non-negative integer) cost

of traversing arc (i, j) ∈ A is cij. (Our approach can easily be adapted to

the case of symmetric costs and/or the case in which the number of

vehicles is restricted.)

2. Literature review

As mentioned above, many formulations have been proposed

for the CVRP. For brevity, we review only ones of relevance here.

Subsections 2.1–2.4 cover two-index vehicle flow, single- and two-

commodity flow, multi-commodity flow and set partitioning formula-

tions, respectively.

2.1. The two-index vehicle flow formulation

Laporte and Nobert (1983) presented what is now called the two-

index vehicle flow formulation. For all (i, j) ∈ A, define a binary variable

xij, taking the value 1 if and only if some vehicle travels from i to j.

For any S ⊂ V , let δ+(S) (respectively, δ−(S)) denote the set of arcs

(i, j) with i ∈ S, j ∈ V \ S (respectively, with i ∈ V \ S, j ∈ S). If S = {i}
then we will write δ+(i) and δ−(i) rather than δ+({i}) and δ−({i}), for

brevity. Given some F ⊂ A, let x(F) denote
∑

(i,j)∈F xij. Finally, for any

set of customers S ⊂ Vc, let q(S) = ∑
i∈S qi. Then the formulation is:

min
∑

(i,j)∈A

cijxij (1)

s.t. x(δ+(i)) = 1 (i ∈ Vc) (2)

x(δ−(i)) = 1 (i ∈ Vc) (3)

x(δ+(S)) ≥ �q(S)/Q� (S ⊆ Vc) (4)

xij ∈ {0, 1} ((i, j) ∈ A). (5)

The out-degree equations (2) and the in-degree equations (3) ensure

that vertices are visited exactly once. The constraints (4), called

rounded capacity (RC) inequalities, prevent the existence of infeasible

routes, and also have the side-effect of preventing subtours. Finally,

(5) are the integrality conditions on the x-variables.

Several families of valid linear inequalities (cutting planes) have

been developed for the two-index vehicle flow formulation (see

Naddef & Rinaldi, 2001 for a survey). We will be interested in the

following inequalities:

• The fractional capacity (FC) inequalities:

x(δ+(S)) ≥ q(S)

Q
(S ⊆ Vc). (6)

• The subtour elimination (SE) inequalities:

x(δ+(S)) ≥ 1 (S ⊆ Vc). (7)

• The generalized large multistar (GLM) inequalities (see Gouveia,

1995):

x(δ+(S)) ≥ 1

Q

∑
i∈S

⎛
⎝qi +

∑
j∈Vc\S

qj(xij + xji)

⎞
⎠ (S ⊆ Vc). (8)

• The knapsack large multistar (KLM) inequalities (see Letchford

et al., 2002):

x(δ+(S)) ≥ 1

β

∑
i∈S

⎛
⎝αi +

∑
j∈Vc\S

αj(xij + xji)

⎞
⎠ (S ⊆ Vc), (9)

where α ≥ 0 and β > 0 are such that the inequality
∑

i∈Vc
αiyi ≤ β

is valid for the 0-1 knapsack polytope:

KP(Q, q) := conv

⎧⎨
⎩y ∈ {0, 1}n :

∑
i∈Vc

qiyi ≤ Q

⎫⎬
⎭ . (10)

Obviously, the RC inequalities dominate the FC and SE inequalities,

and the GLM inequalities dominate the FC inequalities. It is also not

difficult to see that the KLM inequalities include the GLM and SE

inequalities as special cases. In general, there are no other dominance

relations.

2.2. Single- and two-commodity flow formulations

The first single-commodity flow formulation, that we call “SCF1”,

was presented by Gavish and Graves (1979). A continuous variable fij

is defined for each (i, j) ∈ A, representing the total load (if any) carried

along the arc (i, j). One then replaces constraints (4) in the two-index

vehicle flow formulation with:

f (δ−(i))− f (δ+(i)) = qi (i ∈ Vc) (11)

0 ≤ fij ≤ Qxij ((i, j) ∈ A). (12)

The constraints (11) ensure that each customer i receives the demand

of qi. The constraints (12) are just bounds on the f variables.

Gavish (1984) proposed to strengthen SCF1 by replacing the

bounds (12) with the stronger bounds

qjxij ≤ fij ≤ (Q − qi)xij ((i, j) ∈ A).

We call this strengthened formulation “SCF2".

Gouveia (1995) used Hoffman’s circulation theorem (Hoffman,

1960) to project the feasible regions of the LP relaxations of SCF1
and SCF2 into the space of the x variables. The projection of SCF1 is

given by the out-degree equations (2), the in-degree equations (3),

the FC inequalities (6) and non-negativity. The projection of SCF2, as

expected, is stronger, satisfying the GLM inequalities (8) in place of

the FC inequalities.

In the paper of Baldacci, Hadjiconstantinou, and Mingozzi (2004),

a two-commodity flow formulation is presented for the case in which

the costs cij are symmetric. Letchford and Salazar-González (2006)

show that, in this case, the LP relaxation of their formulation gives

the same lower bound as that of SCF2.

2.3. Multi-commodity flow formulations

The first multi-commodity flow formulation, that we call “MCF1a”,

was presented by Garvin, Crandall, John, and Spellman (1957). A bi-

nary variable f k
ij

is defined for each k ∈ Vc and each (i, j) ∈ A, taking

the value 1 if and only if a vehicle traverses (i, j) on the way from the

depot to k. The formulation is then obtained by replacing constraints

(4) in the two-index vehicle flow formulation with:

f k(δ+(0)) = f k(δ−(k)) = 1 (k ∈ Vc) (13)

f k(δ−(0)) = f k(δ+(k)) = 0 (k ∈ Vc) (14)

f k(δ+(i)) = f k(δ−(i)) (k, i ∈ Vc : i 
= k) (15)
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