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This paper presents a cyclical square-root model for the term structure of interest rates assuming that
the spot rate converges to a certain time-dependent long-term level. This model incorporates the
fact that the interest rate volatility depends on the interest rate level and specifies the mean reversion
level and the interest rate volatility using harmonic oscillators. In this way, we incorporate a good deal
of flexibility and provide a high analytical tractability. Under these assumptions, we compute closed-form
expressions for the values of different fixed income and interest rate derivatives. Finally, we analyze the
empirical performance of the cyclical model versus that proposed in Cox et al. (1985) and show that it
outperforms this benchmark, providing a better fitting to market data.
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1. Introduction

Through the time, modeling the term structure of interest rates
(TSIR) has been the object of many studies and the aim of attention
for economists and financial institutions. This paper proposes a
cyclical square-root model where the instantaneous interest rate
is pulled back to a certain time-dependent long term level charac-
terized by an harmonic oscillator. Therefore, assuming a time-
dependent mean reversion level will derive in a time-dependent
spot rate volatility. Empirical evidence (see, for instance, Amin &
Morton (1994) Chan, Karolyi, Longstaff, & Sanders (1992)) illus-
trated that interest rate volatility depends on the interest rates
level. Then, it seems natural to model interest rate volatility using
a similar functional form as that in the mean reversion level.

Models proposed in the academic literature can be classified in
endogenous and exogenous. Endogenous models make certain
assumptions on the factors that drive the TSIR and their stochastic
processes. The TSIR is fully characterized by these factors meaning
that the current TSIR is an output rather than an input of the model.
Examples of one-factor models are Brennan and Schwartz (1980),
Cox, Ingersoll, and Ross (1985), or Vasicek (1977) (CIR from now
on). The main drawback of these models is the lack of empirical real-
ism as they do not fit accurately the current TSIR and, consequently,
do not price correctly fixed income assets. In order to cope with this
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problem, we can find two-factor models such as, for instance, Cox
et al. (1985), Longstaff and Schwartz (1992), or Schaefer and
Schwartz (1984) while Babbs and Nowman (1999), Balduzzi, Das,
Foresi, and Sundaram (1996), Beaglehole and Tenny (1991), Chen
(1996), Dai and Singleton (2000), and Duffie and Kan (1996) intro-
duced and analyzed different multi-factor models.

On the other hand, exogenous models consider the current TSIR
as an input and derive future changes in interest rates avoiding
intertemporal arbitrage opportunities. The first contribution was
made by Ho and Lee (1986) who showed how to build a model con-
sistent with the initial TSIR. Since this model has some disadvan-
tages, their work has been extended by a number of authors such
as Abaffy, Bertocchi, and Gnudi (2005), Black, Derman, and Toy
(1990), Black and Karasinski (1991), Brigo, Mercurio, and Morini
(2005), Heath, Jarrow, and Morton (1992), Hull and White (1990,
1993), and Mercurio and Moraleda (2000).

Applications and analysis of some of these models can be found in
Chen and Huang (2013), Chen and Hu (2010), Chiarella, Clewlow, and
Musti (2005), Chiarella, Fanelli, and Musti (2011), Date and Wang
(2009), de Frutos (2008), Falini (2010), Hainaut (2009), Hernandez,
Saunders, and Seco (2012), Mitra, Date, Mamon, and Wang (2013),
and Weissensteiner (2010), among others. Excellent literature
reviews on term structure TSIR models can be seen in some books
as, for instance, Andersen and Piterbarg (2010), Brigo and Mercurio
(2006), Cairns (2004), Filipovi¢ (2009), Hunt and Kennedy (2004),
James and Webber (2001), Munk (2011), Nawalkha, Believa, and
Soto (2007), and Rebonato (1998) or papers as Boero and Torricelli
(1996), Schmidt (2011), or Vetzal (1994), among others.

Derivative markets trade a huge volume of contracts on a daily
basis and derivatives pricing has become an issue of utmost
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importance. Despite the great progress in this matter, there is still a
trade-off between analytical tractability and empirical accuracy. In
this paper, we introduce a model where the mean reversion level
and the spot rate volatility follow a cyclical process characterized
by an harmonic oscillator. This cyclical model provides great flex-
ibility to reflect the different shapes that the TSIR can exhibit
empirically and provides a high analytical tractability, allowing
an accurate fitting of the TSIR and constituting a powerful pricing
tool. Under this framework, we analytically price zero-coupon
bonds and different derivatives such as forward on bonds, Euro-
pean options on zero-coupon and coupon-bearing bonds, European
bond forward options, swaps, swaptions, caps, floors, collars, and
provide some risk management measures. Finally, we analyze the
empirical performance of this model versus its natural benchmark,
the CIR model. We show that, for the data set used in this analysis,
the cyclical model outperforms this benchmark, providing a much
better fitting to current data for every time horizon.

This paper is organized as follows. Section 2 introduces the cyclical
model and its practical implications. Section 3 presents the general
pricing partial differential equation and derives closed-form expres-
sions for different derivatives. Section 4 presents the empirical analy-
sis of the model. Finally, Section 5 summarizes the main findings and
conclusions. Mathematical proofs are deferred to Appendix A.

2. A cyclical square-root model for the term structure

In this section, we propose our model and the specific func-
tional form for each time-dependent parameter, and describe all
the practical implications arising from this model.

Let r; denote the instantaneous interest rate available at time ¢t
whose dynamics is

dre = u, dt + o, dW, (1)
where W, is a standard Wiener process and

My =10 — 1) (2)
0 = 0Tt 3)

where k € R*.

Consider the harmonic oscillator given as f(t) = Asin(¢ — wt),
where A, ¢, and @ denote the amplitude, offset phase, and tempo-
ral frequency, respectively. This function provides a simple and
flexible functional form to represent a cyclical behavior. In addi-
tion, working with an harmonic oscillator instead of a high-order
polynomial provides a good deal of analytical tractability.

Departing from this harmonic oscillator, we assume that the
mean reversion level, 0, and the volatility, 2, in Egs. (2) and (3),
are defined as

0, = Ay sin’ (@ — wt) (4)
0% = A, sin* (@ — ot) (5)

These specific expressions guarantee the positiveness of the mean
reversion level and the interest rate volatility. It is clear that this
model nests the CIR one taking w = 0 in Egs. (4) and (5). Note that
we incorporate two additional parameters, phase and frequency,
with respect to the CIR model.

For square-root processes of this type, Cox et al. (1985) shows
that the distribution function of interest rates is a rescaled non-
central chi-square with ¢ degrees of freedom. Note that, whenever
& is not a positive integer, the distribution of r; is unknown.
Besides, the dimension of the process r; is given by § = %. Eqgs.
(4) and (5) illustrate that both waves are in phase, then the model’s
dimension can be represented as § = 4ﬂ—‘;" > 0.2

2 Note that, if sin(¢ — wt) is equal to zero, then é becomes indeterminate. As this
case would only occur for a infinitesimal period of time, we do not consider this
possibility.

Our model guarantees the positiveness of interest rates. On this
respect, Feller (1951) studied the Fokker-Plank-Kolmogorov equa-
tion for the transition density and showed that r; > 0 if § > 2, how-
ever it can become null if § < 2 but will never become negative.

3. Pricing

This section presents closed-form expressions for the price of
zero-coupon bonds and, later, we analytically compute closed-
form formulas for the prices of different securities.

Let P(r(,t,T) denote the price at time t of a zero-coupon bond
that pays $1 at maturity T. Then, the bond price dynamics is given
by the process

dP = pp(re, t, T)P(r¢, t, T)dt + op(re, t, T)P(re, £, T)dW, 6)
Applying It6’s Lemma and using (1), it can be shown that
1 1
:uP(rtvt?T) :T)(Pt‘i“urpr +§U$Pﬂ) (7)
P,
GP(r[,t,T) :()’rF (8)

where subscripts in P indicate the corresponding partial derivative.
Applying standard no-arbitrage arguments, there exists a factor
A(ry, t), called market price of risk, such that

Up(re, t,T) — 1t = A(re, t)op(re, t,T) 9)

Finally, some trivial algebra leads to the following partial differen-
tial equation (PDE)
1
Pe(re, £, T) + (i, — A(re, )0, )P (re, £, T) + 5 G2Py(1e,t,T)
—1P(r;,t, T) =0 (10)

that must be verified by the price of any derivative.

3.1. Bond pricing

Similarly to Cox et al. (1985), we consider a market price of risk
such as

A(r, 1) = 1T (1)

Using expressions (2), (3), and (11), the PDE (10) becomes

1
Py (re, t,T) + (1(0; — 1) — AT )Py (1, t,T) + iafrtPrr(rh t,T)
—1P(r,t,T) =0 (12)
The solution of this PDE, subject to the boundary condition
P(rr,T,T) =1, Vrr is given by the following Proposition.

Proposition 1. The price at time t of a zero-coupon bond with
maturity T and $1 face value is given by

P(r;,7) = A(t)e B
where

A(t) =exp (— /T K@J?(’L’)dt)

B(1) = a c1MC(a,q,x) +MS(a,q,x)
7%(/1+K)(C1MC(CI,q,X) +MS(a,q.x)) + w(c1MCP(a,q,Xx) + MSP(a,q.x))

A+ (K}

T 40?2

1= "gu2
xX=@p-owt

Ms(a#(L ¢ — (UT)
~ MC(a,q,p —oT)
T=T-t

Ci=

where 0, is given by (4), MC and MS represent the Mathieu cosine and
sine function, respectively, and MCP and MSP represent the derivative
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