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a b s t r a c t

The Mixed Capacitated General Routing Problem (MCGRP) is defined over a mixed graph, for which some

vertices must be visited and some links must be traversed at least once. The problem consists of determining a

set of least-cost vehicle routes that satisfy this requirement and respect the vehicle capacity. Few papers have

been devoted to the MCGRP, in spite of interesting real-world applications, prevalent in school bus routing,

mail delivery, and waste collection. This paper presents a new mathematical model for the MCGRP based

on two-index variables. The approach proposed for the solution is a two-phase branch-and-cut algorithm,

which uses an aggregate formulation to develop an effective lower bounding procedure. This procedure

also provides strong valid inequalities for the two-index model. Extensive computational experiments over

benchmark instances are presented.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents a new exact algorithm for the Mixed Capac-

itated General Routing Problem (MCGRP) based on branch-and-cut

(B&C). The MCGRP generalizes the single-vehicle and multiple-vehicle

General Routing Problems (GRPs) and the Capacitated Arc Routing

Problem (CARP).

GRPs constitute a class of vehicle-routing problems, in which a

single vehicle or a fleet of vehicles must serve both a subset of links

and a subset of vertices of a given graph. GRPs have interesting prac-

tical applications, prevalent in waste collection, postal delivery and

school bus routing. For instance, in an urban waste collection plan,

the collection along a street may be modeled by means of links that

must be traversed, whereas the collection occurring in specific points

(e.g., hospitals or multi-storey apartment blocks) may be modeled by

means of vertices that must be visited. Similarly, in the postal delivery

services, depending on their demand and dispersion, customers may

be modeled as individual vertices or groups of customers as street

segments (edges or arcs). Finally, in school bus routing, several chil-

dren living on the same street may be picked up either by stopping
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close to each ones home, implying a service on the respective street

segments, or groups of them may walk from their home to a specific

bus stop imposing just one stop.

The GRP was introduced by Orloff (1974) and shown to be

NP -hard by Lenstra and Rinnooy Kan (1976). Most works refer

to the uncapacitated case. Specifically, Letchford (1996, 1999) and

Corberán and Sanchis (1998) proposed valid inequalities for the GRP

polyhedron. For the same problem, Corberán, Letchford, and Sanchis

(2001) described a cutting-plane algorithm based on several classes

of facet-inducing inequalities. Reinelt and Theis (2008) studied the

0/1-polytope associated with the uncapacitated GRP defined over

a connected and undirected graph. The contribution of Corberán,

Romero, and Sanchis (2003) for the GRP defined on a mixed graph

was a new integer programming formulation and a partial descrip-

tion of the related polyhedron. They reported remarkable computa-

tional results obtained by a cutting-plane algorithm. Corberán, Mejía,

and Sanchis (2005) considerably improved this algorithm by defin-

ing a new family of facet-defining inequalities and new separation

procedures. Blais and Laporte (2003) proposed a transformation in

order to solve the uncapacitated GRP defined over directed, undi-

rected and mixed graphs. The GRP is transformed into an equivalent

traveling salesman problem or rural postman problem and solved by

means of available exact algorithms. The approach does not work

equally well in all cases; it works best on directed problems and on

mixed problems, in which the number of edges is relatively small. The

http://dx.doi.org/10.1016/j.ejor.2014.11.005
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uncapacitated GRP was also modeled by resorting to windy graphs.

Corberán, Plana, and Sanchis (2007, 2008) presented a strong windy

general routing polyhedron description and designed a powerful B&C

algorithm able to solve a large number of benchmark instances.

The basic multiple-vehicle routing problem is the Capacitated

Vehicle Routing Problem (CVRP, see Toth & Vigo, 2002, 2014), in which

the demand occurs only at vertices. On the contrary, arc routing prob-

lems (ARPs, see Corberán & Laporte, 2014; Dror, 2000) are GRPs in

which no vertices have to be serviced. While CVRPs are defined on

complete graphs, ARPs share with GRPs that they are defined on in-

complete (often sparse) graphs, which are either undirected, directed,

mixed, or windy.

Important contributions for the mixed CARP have been given by

Belenguer, Benavent, Lacomme, and Prins (2006). They presented

a linear formulation, developed a lower bounding procedure based

on valid inequalities, and described some upper bounds obtained

through three constructive heuristics and a memetic algorithm.

Gouveia, Mourão, and Pinto (2010) described a compact flow-based

model for the mixed CARP and derived an aggregate lower bounding

model. Moreover, they introduced a set of valid inequalities for the

linear programming relaxation of the integer model and presented

promising computational results.

Note that GRPs can be transformed into CARPs by adding loops,

i.e., edges {i, i} or arcs (i, i) to the underlying graph whenever in the

GRP instance a vertex i has to be serviced. The edge or arc receives

the same demand as the vertex that it substitutes. In this sense, then

the mixed CARP and the MCGRP can be considered identical, at least

if the mathematical formulation and solution approach is capable of

handling loops. To the best of our knowledge, this equivalence has

not yet been utilized.

The problem studied and solved in the paper at hand is the MCGRP.

It may cause confusion that sometimes the MCGRP is referred to as Ca-

pacitated General Routing Problem on mixed graphs (CGRP or CGRP-m)

and Node, Edge and Arc Routing Problem (NEARP). There exist lower

bounding procedures and tailored exact algorithms for its solution

(Bach, 2014; Bach, Hasle, & Wøhlk, 2013; Bosco, Laganà, Musmanno,

& Vocaturo, 2013; Gaze, 2013; Gaze, Hasle, & Mannino, 2013). Other

studies present non-exact approaches tackling the problem. Particu-

larly, Pandit and Muralidharan (1995) described a heuristic procedure

which starts with a sub-graph obtained from the original one by con-

sidering only the links that must be traversed and the vertices that

must be visited. Since the sub-graph is generally disconnected, the

connection is reached by adding to it the shortest paths linking two

vertices of disjoint connected components. The sub-graph is then con-

verted into a Eulerian graph which admits a giant tour. A feasible solu-

tion is obtained by cutting the giant tour into smaller tours satisfying

the capacity constraints. Gutiérrez, Soler, and Hervás (2002) intro-

duced an alternative procedure, based on the partition-first-route-

next paradigm, improving previous results. Prins and Bouchenoua

(2005) described a memetic algorithm for the MCGRP. Bosco, Laganà,

Musmanno, and Vocaturo (in press) introduced a matheuristic algo-

rithm for the MCGRP where the exact algorithm of Bosco et al. (2013)

is incorporated in some steps of a neighborhood search. Hasle, Kloster,

Smedsrud, and Gaze (2012) carried out a computational study on

three large scale MCGRP datasets. Finally, an extension of the MCGRP

was tackled by Bräysy, Martínez, Nagata, and Soler (2011).

We propose an alternative exact approach to solve the MCGRP

which combines beneficial ingredients from existing procedures in

an effective way. The novelty of the approach substantially comprises

two aspects. First, it is based on a new MCGRP formulation which

uses two-index variables also to model the link flow. Second, it takes

advantage from all results of a lower bounding procedure. This pro-

cedure produces, besides excellent lower bounds, valid inequalities

that are used to initialize a B&C scheme.

The remainder of the paper is organized as follows. In Section 2, a

formal definition and the new two-index formulation of the MCGRP

are given. In Section 3.1, we present the lower bounding formula-

tion used in the exact approach illustrated in Section 3 in order to

determine lower bounds and general cuts. Section 4 presents compu-

tational results. Final conclusions are drawn in Section 5.

2. Problem description and formulation

A formal definition of the MCGRP relies on a mixed graph G =
(V, E, A) with vertices set V , edges set E and arcs set A. Vertex

1 ∈ V represents the depot, at which a set K of homogeneous ve-

hicles with capacity Q is based. The remaining vertices form the

set C = V\{1}. Every element b ∈ V ∪ E ∪ A has a demand qb ≥ 0,

those elements with strictly positive demand are required, mean-

ing that they must be serviced exactly once. Required vertices are in

VR = {v ∈ C : qv > 0}, required edges are in ER = {e ∈ E : qe > 0}, and

required arcs are in AR = {a ∈ A : qa > 0}. In order to ensure feasibil-

ity, we assume that the demand qr of each required element r does not

exceed Q .

For notational ease, we speak of links when we want to refer to

both edges and arcs in E ∪ A. Any link can be deadheaded, i.e., traversed

without being serviced, any number of times. The traversal of a link

� ∈ E ∪ A results in a non-negative traversal cost c�. In the following,

required elements are referred to as r ∈ VR ∪ ER ∪ AR when distinction

is not essential.

The MCGRP is the problem of finding minimum-cost vehicle tours,

each starting and ending at the depot, that together serve all required

elements exactly once, and respect the vehicle capacity.

In order to state the MCGRP models, we introduce further notation

used throughout the paper: Let S be a non-empty subset of vertices.

We denote by δ+(S) the set of arcs leaving S, by δ−(S) the set of arcs

entering S, by δ+
R (S) the set of required arcs leaving S, by δ−

R (S) the set

of required arcs entering S, by δ(S) the set of edges with exactly one

endpoint in S, and by δR(S) the set of required edges with exactly one

endpoint in S. The associated link sets are δ∗(S) = δ(S)∪ δ+(S)∪ δ−(S)
and δ∗

R(S) = δR(S)∪ δ+
R (S)∪ δ−

R (S). For the sake of brevity, singleton

sets S = {i} in the previous notation can be replaced by i so that, e.g.,

δ(i) stands for δ({i}). Finally, we denote by VR(S) the set of required

vertices belonging to S, by AR(S)the set of required arcs with both end-

points in S, and by ER(S) the set of required edges with both endpoints

in S.

We propose a new mathematical model based on variables with

two indices, one for the respective vehicles k ∈ K and the other

for referring to an element of V ∪ E ∪ A. Let xk
r be a binary variable

equal to 1 if and only if the required element r ∈ VR ∪ ER ∪ AR is ser-

viced by vehicle k. For a link � ∈ E ∪ A and a vehicle k ∈ K, let yk
� be

a non-negative variable representing the number of deadheadings

through � by vehicle k. For a subset of required links L ⊆ AR ∪ ER,

we define xk(L) = ∑
�∈L xk

� , and for a subset of links L ⊆ A ∪ E, we de-

fine yk(L) = ∑
�∈L yk

� . The two-index formulation for the MCGRP reads

as follows:

λ∗ = min
∑
k∈K

∑
�∈E∪A

c�yk
�

⎛
⎝+

∑
�∈ER∪AR

c�

⎞
⎠ (1a)

∑
k∈K

xk
r = 1, ∀ r ∈ VR ∪ ER ∪ AR (1b)

∑
r∈VR∪ER∪AR

qrxk
r ≤ Q, ∀ k ∈ K (1c)

xk(δ∗
R(i))+ yk(δ∗(i)) ≡ even, ∀ i ∈ V, k ∈ K (1d)

xk(δ−
R (S))+ yk(δ−(S))− xk(δ+

R (S))− yk(δ+(S))− xk(δR(S))

−yk(δ(S)) ≤ 0, ∀ S ⊂ V, k ∈ K (1e)
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