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a b s t r a c t

The capacity of a runway system represents a bottleneck at many international airports. The current practice

at airports is to land approaching aircraft on a first-come, first-served basis. An active rescheduling of aircraft

landing times increases runway capacity or reduces delays. The problem of finding an optimal schedule for

aircraft landings is referred to as the “aircraft landing problem”. The objective is to minimize the total delay of

aircraft landings or the respective cost. The necessary separation time between two operations must be met.

Due to the complexity of this scheduling problem, recent research has been focused on developing heuristic

solution approaches. This article presents a new algorithm that is able to create optimal landing schedules on

multiple independent runways for aircraft with positive target landing times and limited time windows. Our

numerical experiments show that problems with up to 100 aircraft can be optimally solved within seconds.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The number of passenger flights and cargo flights has been in-

creasing over recent years and is expected to continue to increase.

The number of aircraft in use, the number of passengers carried, and

the air cargo tonnage are expected to double within the next two

decades (Boeing, 2013). An important limitation in aviation, however,

is the runway systems of airports, which limit the number of take-offs

and landings per hour. The runway capacity of major European air-

ports is exceeded in periods of high demand, which leads to delays in

take-offs and landings. The cost of delays incurred by air traffic flow

management (ATFM) (i.e., during take-off, flight, or landing) for all

European airports was estimated to be as high as 1.25 billion euros

(1.61 billion dollars) in 2011 (Cook & Tanner, 2011). The total ATFM

delay cost in North America was estimated to be as high as 4.6 billion

dollars in 2010 (Ball et al., 2010).

The number of possible landings per hour depends on the types of

aircraft involved and on the sequence of operations. Depending on its

size and shape, each aircraft causes air turbulence (“wake vortices”)

that affects the following aircraft. Therefore a minimum separation

time between two operations is required. Aircraft are usually divided

into a small number of aircraft classes. Table 1 shows a matrix of class-

dependent minimum separation times. The values in this matrix are

based upon the spacing requirements imposed by the US Federal
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Aviation Administration (FAA, 2012). Different separation matrices

can be found in the related literature, but most of these matrices

consist of three to five aircraft classes and have a similar structure

(Beasley, Sonander, & Havelock, 2001; Harikiopoulo & Neogi, 2011;

Psaraftis, 1980; Soomer, 2008).

The aircraft landing problem (ALP) assigns landing times and run-

ways to a given set of aircraft approaching an airport. The planning

horizon is very short as the mean time of an aircraft from the time it

arrives within the radar range of an airport (the Terminal Maneu-

vering Area, TMA) to the targeted landing time is approximately

30 minutes (Balakrishnan & Chandran, 2010). As each aircraft has

a preferred landing time, the objective is to minimize the total delay

costs for all aircraft landings while respecting the separation require-

ments. The cost function approximates the actual costs such as fuel,

maintenance, exhaust emissions, and passengers missing their con-

necting flights.

By re-arranging the sequence of runway operations instead of

using a priority rule, such as FCFS, a significant reduction of total

cost can be achieved. For congested runway systems, this optimiza-

tion leads to either a reduction of the number of aircraft in holding

patterns or to an increase of capacity, i.e., more landings per hour

that can be performed. This would lead to a considerable increase in

revenue.

Extensive reviews of the literature on the ALP are given by Beasley,

Krishnamoorthy, Sharaiha, and Abramson (2000) and Bennell, Mes-

garpour, and Potts (2013). Table 2 provides an overview of related

articles. The columns in the table show the underlying assumptions

of the ALP discussed in the respective articles; most of the articles
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Table 1

Separation requirements (in seconds).

Trailing aircraft

Small Large Heavy

Leading aircraft Small 82 69 60

Large 131 69 60

Heavy 196 157 96

Source: Balakrishnan and Chandran (2010).

discuss the ALP with a single runway (R = 1) while others consider

multiple (parallel and independent) runways (R ≥ 1). The most com-

mon objective is to minimize the total delay costs, but other objectives

(such as minimizing the longest delay or minimizing the makespan)

are also presented. The delay costs are determined by cost functions

that are linear or piecewise linear and convex (i.e., the additional cost

per period of delay increases). Regarding the target time, we can dis-

tinguish two streams of literature; the target times (Ta) are assumed

to be zero or are allowed to be positive. Some of the papers allowing

positive target times allow early landings to occur, that is, landings be-

tween the target time and an earliest landing time (Ea), which are also

associated with costs. Most articles assume limited time windows for

landings, i.e., there is a latest landing time (La) for each aircraft that

must not be exceeded by its actual landing time. The last column

shows which solution approaches are discussed in the respective

articles.

To date, no efficient methods have been proposed in the re-

viewed literature for the multi-runway ALP that are capable of solving

large problem instances. The most common solution approaches are

(1) mixed-integer programming (MIP) formulations, which are solved

with a standard solver; (2) branch-and-bound (B&B) algorithms;

(3) dynamic programming (DP) approaches; and (4) heuristic solu-

tion approaches.

MIP formulations: the first mixed-integer formulation for the ALP

on a single runway was published by Abela, Abramson, Krishnamoor-

thy, De Silva, and Mills (1993). The extension to multiple runways by

Beasley et al. (2000) is the most cited MIP formulation of the ALP to

date. Pinol and Beasley (2006) further generalize this formulation to

runway-dependent time windows and separation times. Briskorn and

Stolletz (2014) proposed a modification of the MIP of Beasley et al.

(2000) that explicitly considers aircraft classes.

B&B algorithms: Abela et al. (1993) present a B&B approach for

the single-runway ALP. Ernst, Krishnamoorthy, and Storer (1999) de-

velop a B&B solution procedure for the ALP that outperforms standard

solvers using the MIP formulation by Beasley et al. (2000) but, nev-

ertheless, results in excessive computation times for all instances,

except for small problem instances.

Dynamic programming approaches: Dear (1976) presents a dynamic

programming formulation for the single runway problem with a

constrained-position-shifting (CPS) assumption, i.e., each aircraft can

be shifted only by a limited number of positions from the sequence of

arrivals at the runway. CPS approaches are also presented by Psaraftis

(1980), Dear and Sherif (1991), and, more recently, by Balakrishnan

and Chandran (2010). Psaraftis (1980) presents a DP approach for the

single-runway ALP that makes use of the class-dependent separation

times to reduce the problem complexity. Bianco, Dell’Olmo, and Gior-

dani (1999) present a DP approach for a single-machine scheduling

problem with sequence-dependent setup times that is equivalent to

the single-runway case of the ALP without consideration of aircraft

classes. Briskorn and Stolletz (2014) describe a DP approach for the

ALP with multiple runways and under consideration of limited time

windows. However, they do not provide numerical results for their

approach.

Heuristic solution approaches: Abela et al. (1993) propose a genetic

algorithm (GA) as a heuristic solution approach. Bianco et al. (1999)

propose two heuristic approaches (cheapest addition and cheapest

insertion) for their DP approach. Fahle, Feldmann, Gtz, Grothklags,

and Monien (2003) compare different exact and heuristic solution

approaches for the ALP on a single runway: MIP, integer programming

(IP), constraint programming (CP), hill climbing (HC), and simulated

annealing (SA). Pinol and Beasley (2006) develop two population-

based heuristic approaches (scatter search and a bionomic algorithm)

for the ALP. Soomer (2008) and Soomer and Franx (2008) introduce

fairness aspects to the ALP by providing airlines the opportunity to

define their own cost functions. The numerical study is performed

using a local search heuristic.

Many articles assume a fixed number of aircraft classes, but

only a few actually use this property in their solution approaches

(Bojanowski, Harikiopoulo, & Neogi, 2011; Briskorn & Stolletz, 2014;

Harikiopoulo & Neogi, 2011; Psaraftis, 1980). The algorithms pre-

sented in the remaining articles assume aircraft-dependent cost

functions and separation requirements. However, most of the prob-

lems discussed feature class-dependent cost functions and separation

requirements.

This article contributes to the current state of research in the

scheduling of airport runway operations by providing a new opti-

mization algorithm for the ALP with general assumptions (multiple

runways, positive target times, and limited time windows). Existing

approaches are either heuristic or rely on more restrictive assump-

tions concerning the number of runways, landing times, or time win-

dows, see Table 2. Our method is based on the DP approach by Briskorn

and Stolletz (2014). However, this paper focuses on computational

complexity only. While polynomiality of the developed approach is

proven, it is left open how to efficiently implement the approach and

what actual computation times can be achieved. Certainly, computa-

tion times can be expected to be huge for a straightforward imple-

mentation since the run time complexity is reported to be O(n17) (n

being the number of aircraft) for two runways and two aircraft classes.

We purposefully modify the problem setting in order to allow more

efficient solution methods without losing practice-orientation. Also,

we develop a new dominance criterion for state space reduction by

which we can reduce computation times significantly. We obtain a

DP approach yielding optimum schedules significantly faster than a

standard MIP solver (CPLEX).

Our approach does not consider stochastic events, e.g., changes in

target landing times of approaching aircraft or weather conditions.

We assume short planning horizon of approximately 45–60 minutes,

in which it is possible to calculate the target landing times with a high

precision, and to have a reliable weather forecast.

In Section 2, we provide a formal problem definition as well as a

mixed-integer programming formulation. In Section 3, the new op-

timization algorithm is described in detail. The numerical study in

Section 4 compares the results of the algorithm to optimal results

of a MIP solver and provides a sensitivity analysis. Section 5 briefly

describes how the algorithm could be used in practice by embed-

ding it in a rolling horizon approach. Section 6 summarizes the major

insights and outlines future research.

2. Problem definition

2.1. Problem description

We consider a set, A = {1, . . . , |A|}, of aircraft partitioned into dis-

joint subsets, A1, . . . , AW , of W classes and a set of R identical and in-

dependent runways. Each aircraft, a ∈ A, belongs to exactly one class

of aircraft in {1, . . . , W} denoted by w(a)and has a target landing time,

Ta, and a latest possible landing time, La. As in Briskorn and Stolletz

(2014), we assume throughout the paper that there is no pair (a, a′)
of aircraft with w(a) = w(a′), Ta < Ta′ , and La > La′ .

For each class w, a non-decreasing and convex cost function,

cw(d) : R+ → R, reflects the additional cost depending on the devia-

tion, d, of the actual landing time from the target time of an aircraft of
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