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a b s t r a c t

We introduce a class of incremental network design problems focused on investigating the optimal
choice and timing of network expansions. We concentrate on an incremental network design problem
with shortest paths. We investigate structural properties of optimal solutions, show that the simplest
variant is NP-hard, analyze the worst-case performance of natural greedy heuristics, derive a
4-approximation algorithm, and conduct a small computational study.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a network optimization problem, e.g., a shortest path
problem, a maximum flow problem, or a traveling salesman
problem. Next, assume that this optimization problem has to be
solved in a number of consecutive time periods and that in each
time period the value of an optimal solution is incurred, e.g., the
cost of an s—t path, the value of an s—t flow, or the cost of a TSP
tour. Let the objective be to minimize or maximize the total
(cumulative) cost or value over the planning horizon. At this point,
that simply means solving the network optimization problem and
multiplying the value of an optimal solution with the number of
time periods in the planning horizon. It becomes more interesting
when a budget is available in each time period to expand the
network, i.e., to build additional links. Expanding the network
may improve the cost or value of an optimal solution to the
network optimization problem in future time periods and thus
may improve the total cost or value over the planning horizon.
However, deciding which links to build and the sequence in which
to build them is nontrivial. In part, because in some situations the
benefits of building a link will only materialize when other links
have been built as well, e.g., adding a single link to the network
does not lead to a shorter TSP tour, but adding two links to the
network does.

We introduce a class of incremental network design problems
that focuses on the optimal choice and timing of network expansions

given that these network expansions impact the value of a solution
to an optimization problem that is solved on the network in each of
the periods of the planning horizon.

We are primarily interested in establishing the complexity
of incremental network design problems, and, in case they are
NP-hard, in their approximability, i.e., establishing whether a
q-approximation algorithm exists, where an algorithm achieves an
approximation ratio q P 1 for a minimization problem if, for every
instance, it produces a solution of value at most qvopt with vopt the
value of an optimal solution. Therefore, we focus on what appears
to be one of the most basic incremental network design problems,
namely the incremental network design problem with shortest
paths.

We investigate structural properties of optimal solutions, show
that even the simplest variant is NP-hard, establish a class of
instances that can be solved in polynomial time, analyze the
worst-case performance of natural greedy heuristics, derive a
4-approximation algorithm, and conduct a small computational
study.

Even though single-stage or single-period network design
problems have been studied extensively by the operations research
community, multi-stage or multi-period network design problems,
which occur just as often in practice, have received much less
attention. We hope that our investigation demonstrates that
multi-period network design problems present interesting
challenges and can produce intriguing and surprising results.

The remainder of the paper is organized as follows. In Section 2,
we introduce the class of incremental network design problems. In
Section 4, we introduce the incremental network design problem
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with shortest paths. In Sections 5–7, we analyze the complexity of
the incremental network design problem with shortest paths, and
we explore greedy heuristics and design an approximation algo-
rithm, respectively. In Section 8, we introduce an integer program-
ming formulation and present the results of a small computational
study. Finally, in Section 9, we discuss possible extensions and
future research.

2. A class of incremental network design problems

Incremental network design problems have two characteristic
features: a design feature, since we are deciding which arcs will
be part of a network, and a multi-period feature, since the ultimate
network design is built over a number of time periods.

The general structure of an incremental network design prob-
lem is as follows. We are given a network D ¼ ðN;AÞ with node
set N and arc set A ¼ Ae [ Ap, where Ae contains existing arcs and
Ap contains potential arcs. Each arc a 2 A has a capacity Ca. Let T
be the planning horizon. A budget Bt is available in every time per-
iod t 2 f1; . . . ; Tg. The budget can be used to build potential arcs
a 2 Ap, which will be available for use in the following period.
For each potential arc a 2 Ap, there is an associated build-cost
ca 6 B. Let yt

a be a 0–1 variable indicating whether arc a 2 Ap has
been built in or before time period t, with all potential arcs initially
unbuilt (y0

a ¼ 0). Thus, yt
a � yt�1

a ¼ 1 indicates that arc a is built in
time period t and can be utilized in period t þ 1. In every time per-
iod, a network optimization problem P has to be solved over the
usable arcs in time period t, i.e., the existing arcs and the potential
arcs that have been built before time period t. Let xt

a represent the
flow on arc a 2 A in time period t 2 f1; . . . ; Tg in an optimal solu-
tion to the network optimization problem. Let FðPÞ define the
‘‘structure’’ of feasible solutions to the network optimization prob-
lem, i.e., the set of constraints imposed on the flow variables (that
it has to be an s—t path, s—t flow, a TSP tour, etc.). The value of an
optimal solution to the network optimization problem P in time
period t is a function of the flows on the arcs in that period and
denoted by vðxtÞ. The objective is to minimize the total cost over
the planning period. Thus, the generic formulation of an incremen-
tal network design problem is as follows:

min
X

t2f1;...;Tg
vðxtÞ þ

X
t2f1;...;Tg;a2Ap

caðyt
a � yt�1

a Þ ð2:1Þ

s.t.

xt 2 FðPÞ 8t 2 f1; . . . ; Tg ð2:2Þ
xt

a 6 Cayt�1
a 8a 2 Ap; t 2 f1; . . . ; Tg ð2:3ÞX

a2Ap

caðyt
a � yt�1

a Þ 6 Bt 8t 2 f1; . . . ; Tg ð2:4Þ

The objective function (2.1) has two components: (1) the total
cumulative value of the solutions to the network optimization
problem solved in each period of the planning horizon and (2)
the total cumulative cost of the network expansions carried out
during the planning horizon. Constraints (2.2) ensure that the solu-
tion in each period of the planning horizon has the required struc-
ture (i.e., the structure that characterizes solutions to the network
optimization problem). Constraints (2.3) ensure that flow on an arc
occurs only when the arc has been built in any of the previous peri-
ods and that the flow on the arc does not exceed the capacity of the
arc. Constraints (2.4) ensure that the cost of building arcs in a per-
iod does not exceed the budget available for construction in that
period of the planning horizon.

Incremental network design problems have characteristics in
common with various network design problems. A brief review
of some relevant literature is given below.

3. Literature review

Network design is a fundamental optimization problem and has
a rich research tradition. The seminal paper by Magnanti and Wong
(1984) discusses many of its features, applications, models, and
algorithms, with an emphasis on network design in transportation
planning. Kerivin and Mahjoub (2005) survey many network
design problems studied in telecommunications. The paper by
Magnanti and Wong (1984) mentions ‘‘Time Scale’’ as one of the
characteristics of a network design problem that can vary in differ-
ent planning environments, e.g., transportation and water resource
design decisions have long-term effects whereas communication
system designs frequently are more readily altered. Not withstand-
ing, the paper focuses exclusively on single-period or single-stage
network design problems. Recently, the interest in multi-period
or multi-stage network design problems in the area of transporta-
tion planning has picked up, partly because it better meets practi-
tioners needs, as in many environments network design decisions
span planning periods of up to 25 years and the intermediate net-
work configurations are of concern as well as the final network
configuration, see for example Kim, Kim, and Song (2008) and
Ukkusuri and Patil (2009). The research reported in Kim et al.
(2008) and Ukkusuri and Patil (2009) focuses specifically on traffic
networks and the network optimization problem solved in each
period is a user equilibrium model. In addition, Ukkusuri and
Patil (2009) consider the stochasticity and elasticity of traffic
demand. Because the nature and characteristics of user equilib-
rium models are different from the more traditional network opti-
mization problems that we are interested in, such as the shortest
path, maximum flow, and multicommodity flow problem, the
resulting bi-level optimization problems are different from
the incremental network design problems as well. Furthermore,
the focus in Kim et al. (2008) and Ukkusuri and Patil (2009) is pri-
marily on gaining insight into the impact of the timing of network
expansions, whereas our focus is on gaining an understanding of
the theoretical complexity of incremental network design prob-
lems and their approximability.

A class of network design problems where construction over
time has been studied extensively is dynamic facility location.
The recent review Arabani and Farahani (2012) is completely ded-
icated to dynamic facility location.

An example of an incremental network design problem that has
received a lot of attention recently is the transformation of an
electrical power grid into a smart grid (e.g., DeBlasio & Tom,
2008; Farhangi, 2010; Mahmood, Aamir, & Anis, 2008; Momoh,
2009), where it is often the case that resource and budget
constraints allow only a limited number of upgrades per time
period (e.g., annually). Network design over time also occurs
naturally in disruption management, where the functioning of
critical infrastructures needs to be restored after a disruption due
to environmental, technological or intentional damage to system
components (e.g., Lee, Mitchell, & Wallace, 2007, 2009; Matisziw,
Murray, & Grubesic, 2010). In this context, Guha, Moss, Naor, and
Schieber (1999), Averbakh (2012), and Averbakh and Pereira
(2012) focus on the recovery times of nodes, which is the first time
a node is connected to a special depot node. Recovery time is also
the objective in the work of Xu et al. (2007) on the restoration of
a power network after an earthquake.

Closer to the problem proposed in this paper, in the sense that
the focus is on optimizing the cumulative performance of the net-
work over time, is Matisziw et al. (2010) on a multi-objective
approach to network restoration where the performance of the
network is measured by connectivity, and Cavdaroglu, Hammel,
Mitchell, Sharkey, and Wallace (2013) on maximizing the cumula-
tive flow through a set of interdependent networks.
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