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a b s t r a c t

Generalized characteristic functions extend characteristic functions of ‘classical’ TU-games by assigning a
real number to every ordered coalition being a permutation of any subset of the player set. Such general-
ized characteristic functions can be applied when the earnings or costs of cooperation among a set of
players depend on the order in which the players enter a coalition.

In the literature, the two main solutions for generalized characteristic functions are the one of Nowak
and Radzik (1994), shortly called NR-value, and the one introduced by Sánchez and Bergantiños (1997),
shortly called SB-value. In this paper, we introduce the axiom of order monotonicity with respect to the
order of the players in a unanimity coalition, requiring that players who enter earlier should get not more
in the corresponding (ordered) unanimity game than players who enter later. We propose several classes
of order monotonic solutions for generalized characteristic functions that contain the NR-value and SB-
value as special (extreme) cases. We also provide axiomatizations of these classes.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Generalized characteristic functions on a player set N, intro-
duced by Nowak and Radzik (1994), extend characteristic func-
tions of ‘classical’ TU-games by assigning a real number to every
ordered coalition of N. Here an ordered coalition of N is a permuta-
tion of any subset of N. Classical characteristic functions form the
special class where the real number or worth assigned to any
ordered coalition only depends on the players that are part of this
ordered coalition, i.e. it does not matter in which order the players
enter the coalition. Generalized characteristic functions can be
used in situations where the worth (or cost) that can be generated
by a set of players depends on the order in which the players enter.

Consider, for example, the airport games of Littlechild and
Owen (1973) to allocate the building and maintenance costs of air-
port landing strips, see also Littlechild and Thompson (1977). An
airport cost situation consists of a set of airplanes (being the play-
ers in the game) and for each airplane a nonnegative cost of the air-
line strip that is necessary for this airplane to land. Since the

airplanes are different they need landing strips of different length.
In the associated airport game, the worth of a coalition (being a
subset of the set of airplanes N) is the cost of the airline strip
needed for the largest airplane in this coalition (assuming that lar-
ger airplanes need longer and more expensive landing strips).1 But
this means that building a landing strip of a certain size does not
depend on the order in which the airplanes enter the coalition.
The worth (cost) of a coalition is always fully determined by the cost
for the largest airplane in the coalition. However, in real life con-
struction industry it is usually more expensive to build a project in
several steps than to build it fully at once. For example, when one
wants to extend an existing landing strip then all the machinery
has to be brought back to the airport, everything needs to be setup
again, maybe some reconstruction or preparation needs to be done
before being able to extend the existing landing strip. Then it would
have been less costly to have built the longer landing strip at once.
Therefore, instead of modelling an airport cost problem on n air-
planes by an n-dimensional cost vector c 2 RN

þ which ith component
is the cost of building an airline strip suitable for airplane i, it seems
more realistic to model it by an n� n dimensional cost matrix C,
which first column coincides with the above mentioned cost vector
c (i.e. the first column gives the cost for building the airline strip for i
when there is nothing built yet), and which ijth component
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cij; i 2 f1; . . . ;ng; j 2 f2; . . . ;ng, is the cost of building (extending) an
airline strip suitable for airplane i when the landing strip is built
already for airplane j� 1 (and smaller airplanes). So, we might
consider the first column as a standard airport cost problem.

Example 1.1. Suppose that there are three airplanes N ¼ f1;2;3g,
where the costs of building an airline strip for airplane i 2 N is
given by cost vector c ¼ ðciÞi2N ¼ ð1;3;4Þ. However, it can be that
extending the airline strip for airplane 1 to one for airplane 2 costs
3 additional to the cost made to build the already existing airline
strip. If, further extending the airline strip for airplane 1 to one for
airplane 3 costs 3, and extending the airline strip for airplane 2 to
one for airplane 3 costs 2, this can be represented by cost matrix

C ¼
1 0 0
3 3 0
4 3 2

264
375:

Such an airport cost problem, where the cost of the landing strip
depends on the order in which airplanes announce that they want
to use the landing strip, cannot be modelled by a classical TU-game.
Although the entrance of an airplane that is not larger than the larg-
est airplane in the coalition does not change the worth, when an air-
plane larger than the largest airplane in the coalition enters, then
the additional cost depends on which is the largest airplane in the
already existing coalition. Such generalized airport cost problems
can be modeled by a generalized characteristic function where
the worth of an ordered coalition of airplanes is the cost of the land-
ing strip if it would be built sequentially, in each step being large
enough to allow the corresponding airplane to land.

In the literature, the two main solutions for generalized charac-
teristic functions are the one of Nowak and Radzik (1994), which
we will call the NR-value, and the one introduced by Sánchez
and Bergantiños (1997) and generalized in Sánchez and
Bergantiños (2001), which we refer to as the SB-value. Both
solutions extend the Shapley value (Shapley, 1953) of classical
TU-games in the sense that for a generalized characteristic func-
tion that represents a classical characteristic function they yield
the Shapley value of that classical game.2

In this paper we criticize some axioms underlying these two
solutions and we propose a new axiom, called order monotonicity,
and use it to characterize a class of solutions that contains the
NR-value and the SB-value as extreme cases. Moreover, we revisit
the parametric family of geometric solutions for generalized
characteristic functions introduced in del Pozo, Manuel, González-
Arangüena, and Owen (2011) and we characterize it.

The paper is organized as follows. Section 2 contains prelimi-
naries on games in generalized characteristic function and games
with a permission structure. In Section 3 we introduce the new
axiom of order monotonicity and use it to define a new class of
solutions for games in generalized characteristic functions. In
Section 4 we discuss the special class of the so-called geometric
solutions. Finally, Section 5 contains concluding remarks.

2. Preliminaries

2.1. Games and generalized games

A situation in which a finite set of players N � N can generate
certain payoffs by cooperation can be described by a cooperative
game in characteristic function form (also known as cooperative
game with transferable utility or simply TU-game) being a pair
ðN; v̂Þ where the characteristic function v̂ : 2N ! R is a real func-
tion defined on 2N (the set of all subsets of N), that satisfies
v̂ð;Þ ¼ 0. For each coalition S 2 2N , the worth v̂ðSÞ represents the
(transferable) utility that players in S can obtain if they decide to
cooperate. When there is no ambiguity with respect to the players
set N, we will identify the game ðN; v̂Þ with its characteristic func-
tion v̂ . In the sequel we will denote the cardinality of coalitions
S; T;R 2 2N by lower case s; t; r. We will denote by GN the set of
all characteristic functions with player set N. It is well-known that
GN is a 2n � 1 dimensional vector space, n ¼ jNj, with the unanimity
games ûSf g;–S�N as basis. For every S # N; S – ;, the unanimity game
ûS is defined by ûSðTÞ ¼ 1 if S # T , and ûSðTÞ ¼ 0, otherwise. For a
given v̂ 2 GN , the unanimity coefficients (i.e. the coordinates of v̂
in the unanimity basis) fDv̂ ðTÞg;–T�N are given by (see Harsanyi
(1959))

Dv̂ðTÞ ¼
X
R # T

ð�1Þt�rv̂ðRÞ; ;– T # N: ð2:1Þ

A solution or value for TU-games is a function which assigns a
payoff vector x 2 RN to every TU-game in GN . One of the most
famous solutions is the Shapley value (Shapley, 1953), uSh, which
is given by:

uSh
i ðN; v̂Þ ¼

X
S # Nnfig

ðn� s� 1Þ!s!

n!
ðv̂ðS [ figÞ � v̂ðSÞÞ; for all i 2 N:

Nowak and Radzik (1994) introduced the concept of game in
generalized characteristic function form where the order in which
a coalition is formed influences the worth that can be generated.
For each S 2 2N n f;g, let PðSÞ denote the set of all permutations
or ordered coalitions of the players in S and, for notational
convenience, Pð;Þ ¼ f;g. We denote XðNÞ ¼ T 2 PðSÞ j S # Nf g
as the set of all ordered coalitions with players in N.
A game in generalized characteristic function form is a pair
ðN;vÞ;N being the player set and v : XðNÞ ! R a real function
(the generalized characteristic function), defined on XðNÞ and
satisfying vð;Þ ¼ 0.

For each S # N, and for every ordered coalition T 2 PðSÞ;vðTÞ
represents the economic possibilities of the players in S if the coa-
lition is formed following the order given by T.

Example 2.1. Consider the generalized airport cost problem of
Example 1.1. The corresponding generalized characteristic function
is vð1Þ ¼ 1; vð2Þ ¼ vð21Þ ¼ 3, vð3Þ ¼ vð31Þ ¼ vð32Þ ¼ vð312Þ ¼
vð321Þ ¼ 4, vð12Þ ¼ 1þ3¼ 4; vð13Þ ¼ vð132Þ ¼ 1þ3¼ 4, vð23Þ¼
vð213Þ ¼ vð231Þ ¼ 3þ 2 ¼ 5 and vð123Þ ¼ 1þ 3þ 2 ¼ 6.

We denote by GN the set of all generalized characteristic func-
tions with player set N, and G ¼ fðN;vÞjN � N; v 2 GNg. As in the
case of games in GN , we will sometimes identify the game with
its characteristic function.

Given an ordered coalition T 2 XðNÞ, there exists S # N such that
T 2 PðSÞ. We will denote by HðTÞ ¼ S the set of players in the
ordered coalition T, and t ¼ jHðTÞj (if there is no confusion with
jTj). Each ordered coalition T ¼ ði1; . . . ; itÞ 2 XðNÞ establishes a
strict linear order �T in HðTÞ, defined as follows: for all
i; j 2 HðTÞ; i �T j (i precedes j in T) if and only if there exist
k; l 2 f1; . . . ; tg; k < l, such that i ¼ ik; j ¼ il.

2 The Shapley value is one of the most relevant solutions concept in cooperative
game theory. Kamijo and Kongo (2012) compare this value with some other relevant
ones. Moretti and Patrone (2008) is an excellent survey on the transversality of the
Shapley value. Extensions of the Shapley value also have been considered in other
generalizations of the standard TU-game model, for example for fuzzy games in e.g.
Tsurumi, Tanino, and Inuiguchi (2001) and Li and Zhang (2009), games in partition
function form in e.g. Grabisch and Funaki (2012), TU-games with awards in Lorenzo-
Freire, Alonso-Meijide, Casas-Méndez, and Hendrickx (2007), and games where
cooperation is restricted by certain combinatorial structures such as communication
structures in Myerson (1980), probabilistic communication situations in Gómez,
González-Arangüena, Manuel, and Owen (2008), convex geometries in Bilbao (1998),
antimatroids in Algaba, Bilbao, van den Brink, and Jiménez-Losada (2003) and
augmenting systems in Bilbao and Ordóñez (2009).
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