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a b s t r a c t

One important problem faced by the liner shipping industry is the fleet deployment problem. In this
problem, the number and type of vessels to be assigned to the various shipping routes need to be deter-
mined, in such a way that profit is maximized, while at the same time ensuring that (most of the time)
sufficient vessel capacity exists to meet shipping demand. Thus far, the standard assumption has been
that complete probability distributions can be readily specified to model the uncertainty in shipping
demand. In this paper, it is argued that such distributions are hard, if not impossible, to obtain in practice.
To relax this oftentimes restrictive assumption, a new distribution-free optimization model is proposed
that only requires the specification of the mean, standard deviation and an upper bound on the shipping
demand. The proposed model possesses a number of attractive properties: (1) It can be seen as a gener-
alization of an existing variation of the liner fleet deployment model. (2) It remains a mixed integer linear
program and (3) The model has a very intuitive interpretation. A numerical case study is provided to illus-
trate the model.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The massive scale of global freight movement observed today
would not have been possible without maritime transportation
(Talley, 2009). Indeed, estimates of the tonnage transported in
world trade by sea are as high as 90% (Rodrigue, Comtois, & Slack,
2009). One important sector within the shipping industry is liner
shipping. A liner shipping company transports cargo, following a
published sailing schedule on the routes it serves (Bell, Liu,
Rioult, & Angeloudis, 2013; Plum, Pisinger, Salazar-González, &
Sigurd, 2014). Competition among ocean carriers is known to be
especially fierce in liner shipping (Talley, 2012).

Liner companies face various routing and scheduling problems
at the strategic, tactical, and operational planning levels (e.g. see
Christiansen, Fagerholt, Nygreen, & Ronen, 2013; Kosmas &
Vlachos, 2012; Meng, Wang, Andersson, & Thun, 2014; scheduling
in liner shipping: overview, 2014; Mulder & Dekker, 2014;
Pantuso, Fagerholt, & Hvattum, 2014; and the references therein).
One critical decision at the tactical planning level is the fleet
deployment problem in which the number and type of ships to
be assigned to the various shipping routes need to be determined
in order to maximize their profits, while at the same time ensuring
that (most of the time) sufficient vessel capacity exists to meet

shipping demand. This fleet deployment problem has been first
addressed in the literature by Perakis and Jaramillo (1991) and
Jaramillo and Perakis (1991) who formulated (integer) linear pro-
gramming models to solve this planning problem. In these early
and subsequent studies (such as Gelareh & Meng, 2010; Liu, Ye, &
Yuan, 2011), shipping demand has been assumed to be known with
complete certainty. Only until recently has this assumption been
relaxed, and has shipping demand been more realistically modeled
as random variables (e.g. see Meng & Wang, 2010; Meng, Wang, &
Wang, 2012; Wang, Meng, Wang, & Tan, 2013). It is interesting to
note that other researchers, assuming deterministic demand, have
embedded the fleet deployment problem within the liner shipping
network design problem (e.g. see Brouer, Alvarez, Plum, Pisinger, &
Sigurd, 2014 and Plum, Pisinger, & Sigurd, 2013).

In this paper, we further advance the stochastic modeling of the
liner ship fleet deployment problem introduced by Meng and
co-workers by relaxing the currently standard assumption that
probability distributions are readily available to characterize uncer-
tain shipping demand (cf. Ben-Tal & Nemirovski, 2002). Indeed,
there might be a lack of historical data to estimate these distribu-
tions with confidence (especially when there is a new shipping
route), or historical data might simply not be representative due
to a changing economic outlook. In the proposed modeling
approach, instead of having to specify complete probability distri-
butions, a distribution-free approach is adopted in which the
modeler only needs to specify the mean, standard deviation and
an upper bound on the shipping demand. Clearly, these quantities
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form a strict subset (i.e. they are easier to specify) of what is needed
in order to specify a complete probability distribution (cf. Meng &
Wang, 2010; Meng et al., 2012; Wang et al., 2013). Another attrac-
tive feature of our approach is that the computational requirements
remain unchanged compared to current state-of-the-art fleet
deployment models that account for demand uncertainty through
complete probability distributions. More specifically, as in
currently available models, the proposed model is of the mixed
integer linear programming class. Lastly, the proposed modeling
approach has a very intuitive interpretation.

The remainder of this paper is organized as follows. In Section 2,
a brief review of a variation of a currently available stochastic
demand fleet deployment model is presented, followed by the pro-
posed distribution-free model. Fundamental properties of the
model are analyzed and discussed. Section 3 provides a case study
to illustrate the model. Finally, Section 4 summarizes and con-
cludes the paper.

2. Model formulation and properties

Before we introduce the proposed distribution-free model, let us
first briefly review a recent variation of the liner fleet deployment
problem that accounts for stochastic shipping demand, e.g. see
Meng and Wang (2010) and Wang et al. (2013). To this end, let
us first define some notation.

Sets
R set of routes
K set of ship types
Parameters
cv

kr the operating cost of a voyage for a ship of type
k 2 K on route r 2 R

ci
k

the cost of chartering in a ship of type k 2 K

co
k the revenue of chartering out a ship of type k 2 K

lk the number of ships of type k 2 K available in the
liner company’s own fleet

mk the maximum number of ships of type k 2 K that
can be chartered from other ship owners

nr the number of voyages required on route r 2 R to
maintain the liner’s desired minimum sailing
frequency

p the planning horizon under consideration (in
days)

tkr the transit time of a ship of type k 2 K to traverse
router 2 R (in days)

qk the capacity of a ship of type k 2 K (in TEU)
ar the maximum probability the liner company fails

to meet shipping demand on router 2 R
Dr the maximum (random) shipping demand

among all legs of the voyage on route r 2 R
Decision variables
ukr the total number of ships of type k 2 K to be

deployed on route r 2 R
vk the number of ships to be chartered from other

ship owners
wk the number of ships to be chartered out
xkr the number of voyages ships of type k 2 K

completes on route r 2 R

One variation of the liner fleet deployment problem with uncertain
shipping demand can now be stated as Model (P1):

Model (P1)

min
X

k

X
r

cv
krxkr þ

X
k

ci
kvk �

X
k

co
kwk ð1Þ

subject to:X
r

ukr 6 lk þ vk; 8k 2 K ð2Þ

vk 6 mk; 8k 2 K ð3Þ

wk ¼ lk þ vk �
X

r

ukr ; 8k 2 K ð4Þ

xkr 6 ukrbp=tkrc; 8k 2 K; 8r 2 R ð5Þ
X

k

xkr P nr; 8r 2 R ð6Þ

Pr
X

k

xkrqk P Dr

 !
P 1� ar ; 8r 2 R ð7Þ

ukr;vk;wk; xkr P 0 and integer; 8k 2 K; 8r 2 R ð8Þ

The objective function (1) denotes the goal to minimize the total
cost (the sum of the operating cost and the cost of chartering ships,
minus the revenue obtained by chartering ships out). Constraint (2)
ensures that the total number of ships (of type k) deployed does not
exceed what is available to the liner company, i.e. the sum of ships
(of type k) it owns plus the number of ships (of type k) chartered
from other ship owners. In constraint (3), a maximum is imposed
on the number of ships that can be chartered from others, whereas
constraint (4) is a conservation constraint that ensures that all ships
that are not deployed are chartered out to maximize profit (cf. Meng
et al., 2012). The maximum number of voyages (on route r) ships of
type k can complete within the planning horizon of p days is given
by the product of ukr (the number of ships of type k assigned to route
r) and bp=tkrc, where bac denotes the largest integer smaller or equal
to a. This is captured in constraint (5). Constraint (6) states that the
number of voyages to be completed on route r should at least corre-
spond to the liner’s desired minimum sailing frequency on route r. If
shipping demand is random, when a ship on route r rotates among
the N ports j1, j2, j3, . . . ,jN, then the shipping demand Dðji ;jiþ1Þ

r on each
leg (ji, ji+1) of the voyage (with jN+1 � j1) will be a random variable as
well since it is the sum of the (stochastic) shipping demand over all
port pairs that utilizes leg (ji, ji+1) in transporting cargo to their final
destinations (e.g. see Wang et al., 2013). Following previous models,
the planning philosophy to design for the highest shipping volume
among all legs, i.e. Dr ¼maxðji ;jiþ1ÞfD

ðji ;jiþ1Þ
r g, is adopted. Specifically,

constraint (7) guarantees that, with a probability of at least 1 � ar,
the deployed vessel capacity is sufficient to transport the uncertain
shipping demand on all legs of route r. Finally, constraint (8)
enforces non-negativity and integrality of the decision variables in
the model. In fact, although Model (P1) differs from the two-stage
stochastic programming model in Meng et al. (2012), using the same
proof as in the aforementioned paper, it is easy to show that the
integrality constraints on vk and wk can be relaxed.

Lemma 1. The integrality constraints on vk and wk in Model (P1) can
be relaxed without changing the optimal solution.

As stated, until now, the liner fleet deployment problem has
been solved with the assumption that probability distributions
characterizing shipping demand are completely known (cf.
constraint (7)). More specifically, prior studies typically define
distributions for the shipping demand between origin–destination
port pairs that, in turn, determine the distributions of Dðji ;jiþ1Þ

r and
Dr. For example, Meng and Wang (2010) employ the normal distri-
bution, whereas Wang et al. (2013) use the lognormal distribution.
To support these assumptions, the authors argue that (log)normal
distributions are typically used in inventory management. The
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