
European Journal of Operational Research 242 (2015) 445–454

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Production, Manufacturing and Logistics

Measuring the bullwhip effect for supply chains with seasonal

demand components

C. H. Nagaraja a,∗, A. Thavaneswaran b, S. S. Appadoo c

a Fordham University, Department of Management Systems, 5 Columbus Circle, Rm 1116, New York, NY 10019, USA
b University of Manitoba, Department of Statistics, 326 Machray Hall, Winnipeg, MB R3T 2N2, Canada
c University of Manitoba, Department of Supply Chain Management, 678 Drake Centre, 326 Machray Hall, Winnipeg, MB R3T 2N2, Canada

a r t i c l e i n f o

Article history:

Received 17 September 2013

Accepted 12 October 2014

Available online 4 November 2014

Keywords:

Supply chains

Bullwhip

Time series

Seasonal demand

a b s t r a c t

A bullwhip measure for a two-stage supply chain with an order-up-to inventory policy is derived for a

general, stationary SARMA(p, q)× (P, Q)s demand process. Explicit expressions for several SARMA models are

obtained to illustrate the key relationship between lead-time and seasonal lag. It is found that the bullwhip

effect can be reduced considerably by shortening the lead-time in relation to the seasonal lag value.
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1. Introduction

When retailers submit orders to their suppliers in response to

demand, they must carefully balance inventory levels and expected

future demand. Ensuring that the inventory can meet consumer de-

mand often results in higher fluctuations in the ordering process than

the variability of demand would initially suggest. This phenomenon

is called the bullwhip effect and can depend on many factors such

as the ordering policy, the lead-time for an order to arrive, and even

the demand process itself. Lee, Padmanabhan, and Whang (1997a,

1997b) have illustrated the existence of this effect at firms such as

Proctor & Gamble Co. and Hewlett-Packard Company. The distortion

of information as orders go upstream in a supply chain has been stud-

ied from a mathematical perspective by examining the magnitude of

the bullwhip effect under various settings. In this paper, we consider

a single-item, two-stage supply chain with an order-up-to inventory

policy and derive a bullwhip effect measure for a general class of de-

mand models: seasonal autoregressive and moving average processes

(i.e., SARMA(p,q)×(P,Q)s). We use this theory to show the crucial links

among the magnitude of the bullwhip effect, the lead-time, and sea-

sonal lag.

There is a large body of work showing that demand has seasonal

components. Wray (1958, pp. 4) writes, for example, that toy pur-

chases are seasonal with demand rising around the Christmas holi-
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days. Baltas (2005) and Heien (1983) examine the seasonal behavior

of the demand for nondurable goods such as laundry detergent, food,

and energy. Board (2008) and Heien (1983) also examine housing

and Board (2008) continues his analysis for other durable goods. Fi-

nally, for a more general discussion examining cyclical demand across

industries and countries, see Beaulieu, MacKie-Mason, and Miron

(1992).

Furthermore, seasonal demand has been previously considered

within the operations and supply chains context – just not, as far as

we know, in the bullwhip literature. For example Crowston, Haus-

man, and Kampe (1973) and McClain and Thomas (1977) focus on

production planning for goods which are in demand on a seasonal

basis. Sethi and Cheng (1997) and Aviv and Federgruen (2001) study

inventory systems for products with seasonal demand as well. Finally,

Bradley and Arntzen (1999) combine production planning and inven-

tory policy along with capacity in the presence of seasonal demand.

Given this large body of literature and that the demand process is a

key driver of the bullwhip effect, we feel it is critical to incorporate

demand seasonality in our measurements.

This paper is organized as follows. We begin with a review of the

existing bullwhip effect literature in Section 2. In Section 3, we out-

line the supply chain framework for one supplier and one retailer

where the latter employs an order-up-to inventory policy and math-

ematically define the bullwhip measure. In Section 4, we describe

the SARMA(p,q)×(P,Q)s model. Sections 3 and 4 provide the founda-

tion for the main result. Next, in Section 5, we derive the bullwhip

measure for the general SARMA demand case. We apply our theorem

to the AR(1), MA(q), and ARMA(1,1) settings to connect our new re-

sults to previous work. In Section 6, we consider the SARMA(1, 0)s,
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SARMA(0, 1)× (1, 0)s, and SARMA(1, 0)× (0, 1)s cases, deriving for-

mulas analytically from the main theorem. We examine the condi-

tions under which the bullwhip effect exist focusing specifically on

the key relationship between the seasonal lag and the lead-time be-

tween placing and receiving an order. Moreover, we show how to

reduce the bullwhip effect by exploiting this relationship. Finally, we

provide some concluding remarks in Section 7.

2. Background

For a general overview of the bullwhip effect and its causes, see Lee

et al. (1997a). Luong (2007), Luong and Phien (2007), and Duc, Luong,

and Kim (2008) derive explicit expressions for the bullwhip measure

for the AR(1), AR(p) and ARMA(1,1) demand processes respectively.

We will be generalizing their results in this paper. Graves (1999) has

examined the ARIMA(0,1,1) case as well. Gilbert (2005) and Galmaan

(2006) examine the bullwhip effect on orders and inventory for ARMA

and ARIMA models. Gilbert (2005) considers a slightly different setup

than what we do here. Ma and Wu (2014) look at AR(1) and simple

ARMA models for multi-stage supply chains. However, the effects of

seasonality are not considered.

A second approach focuses on comparing the magnitude of the

bullwhip effect among different forecasting methods. For example,

Chen, Ryan, and Simchi-Levi (2000) forecast demand with exponen-

tial smoothing. Zhang (2004b) compares three forecasting methods:

minimizing the mean-squared forecasting error (used by many re-

searchers including us), moving average, and exponential smoothing.

He finds that the bullwhip measure can vary based on the forecasting

method applied. Hayya, Kim, Disney, Harrison, and Chatfield (2006)

examine forecasting methods with an additional focus on the impact

of lead-times in the bullwhip analysis. Marchena (2011) examines

estimation methods for ARMA demand models.

A final stream of research concentrates on ways to reduce the

bullwhip effect. Alwan, Liu, and Yao (2003) study demand forecasting

methods which can reduce the bullwhip effect specifically for AR(1)

and ARMA(1,1) demand processes. Wang, Jia, and Takahashi (2005)

investigate how unforeseen events, such as demand shocks, influence

their extended bullwhip effect measure. They also discuss how infor-

mation sharing between the retailer and supplier can help eliminate

the bullwhip effect altogether. Gill and Abend (1997) show this in ac-

tion through their case study on Wal-Mart Stores, Inc. Chatfield, Kim,

Harrison, and Hayya (2004) investigate the bullwhip effect especially

in the case of variable lead-times for an order-up-to, two-stage sup-

ply chain process using simulation. They find that information sharing

can reduce the bullwhip effect. Using agent-based modeling, Zarandi,

Pourakbar, and Turksen (2008), derive ordering polices which can

decrease the bullwhip effect. Dejonckheere, Disney, Lambrecht, and

Towill (2003) and Disney and Towill (2003) examine how to reduce

the bullwhip effect using various fractional ordering policies. Gaalman

(2006) extends this to the ARMA demand case when the lead-time is

one period.

We note that in none of these cases does seasonal demand play a

part in the analyses, which (a) has been shown to exist (Baltas, 2005;

Beaulieu et al., 1992; Board, 2008; Heien, 1983; Wray, 1958) and (b)

is incorporated in other supply chain research (Aviv & Federgruen,

2001; Bradley & Arntzen, 1999; Crowston et al., 1973; McClain &

Thomas, 1977; Sethi & Cheng, 1997). We demonstrate in this paper

that the relationship between lead-time and seasonal lags are crucial

to bullwhip effect reduction.

3. Supply chain framework

Consider a single-item, two-stage supply chain with one supplier

and one retailer. Assume that the retailer employs an order-up-to in-

ventory policy. In this section, we borrow notation from Luong (2007)

as we describe the supply chain framework. If we index the fixed-

length inventory review period by the subscript t, an order placed at

time t arrives in t + L periods; therefore, L is the fixed lead-time. At

the start of period t, the retailer places an order of quantity Qt to the

supplier based both on previously realized demand and future fore-

casted demand. The order placed at time t − L arrives and Dt units are

sold (i.e., Dt is demand at time t). Note that L includes the inventory

review period and is assumed to be a positive integer (L ≥ 1).

Qt depends on forecasts of the lead-time demand, denoted as DL
t ,

from time t to time t + L − 1, the period before the order placed at

time t arrives. Now, let D̂t+s be the minimum mean squared error

predictor of Dt+s based on Dt−1, Dt−2, . . .. Then, we define lead-time

demand and its forecast as:

DL
t = Dt + Dt+1 + · · · + Dt+L−1 (1)

D̂L,t−1
t = D̂t−1

t + D̂t−1
t+1 + · · · + D̂t−1

t+L−1. (2)

The term D̂t−1
t denotes the forecasted demand at time t with real-

ized demand known up to time t − 1. Likewise, D̂t−1
t+1 is the forecasted

demand for time t + 1 also with realized demand known up to time

t − 1, and so forth.

The order-up-to level St is computed using the forecasted demand

for the L periods before the order arrives plus the safety (buffer) stock:

St = D̂L,t−1
t + safety stock. (3)

Next, the order quantity is calculated as follows:

Qt = St − (St−1 − Dt−1) = St − St−1 + Dt−1 (4)

=
L−2∑
i=0

D̂t−1
t+i

− D̂t−2
t+i︸ ︷︷ ︸

(A)

−
(

D̂t−2
t−1 − Dt−1

)
︸ ︷︷ ︸

(B)

+ D̂t−1
t+L−1︸ ︷︷ ︸
(C)

(5)

= D̂L,t−1
t − D̂L,t−2

t−1 + Dt−1. (6)

This calculation is best interpreted with (5), although we use (6) in

subsequent computations. Component (A) denotes the change in the

forecast for time t + i between periods t − 2 and t − 1. For example, if

(A) is positive, more demand is expected in period t + i than originally

forecasted. Component (B) is the difference between the realized de-

mand and the final forecast for time t − 1. Predicted demand for the

final period before the order is placed in time t is component (C). Note

that the safety stock is irrelevant in the bullwhip calculations as it is

canceled out in (4).

Finally, the bullwhip effect is the propagation of the variation in

demand up the supply chain. Mathematically, the bullwhip measure

function B(·) is defined as:

B(·) = Var[Qt]/Var[Dt]. (7)

If B(·) > 1, then the bullwhip effect is present.

4. SARMA(p, q)×(P, Q )s model

As demand is seasonal for a variety of products (see Baltas, 2005

or Wray, 1958), using SARMA models may be more appropriate to

describe it than ARMA models alone. This addition allows us to con-

sider a much larger class of demand processes, resulting in more

accurate models for demand, and therefore, more accurate bullwhip

measurements. A downside is that the equations become complex

and additional data is required to fit such models. We describe the

model form next.

Let Dt be a stationary, SARMA(p, q)×(P,Q)s, written using the Box

and Jenkins (1970) notation:

�P

(
Bs
)
φ(B)Dt = �Q

(
Bs
)
θ(B)at (8)

where p denotes the order of the autoregressive (AR) component, q

is the order of the moving average (MA) component, P is the order

of the seasonal autoregressive element, Q is the order of the seasonal
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