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a b s t r a c t

We consider the output processes of some elementary queueing models such as the M/M/1/K queue and the

M/G/1 queue. An important performance measure for these counting processes is their variance curve v(t),

which gives the variance of the number of customers in the time interval [0, t]. Recent work has revealed

some non-trivial properties dealing with the asymptotic rate at which the variance curve grows. In this paper

we add to these results by finding explicit expressions for the intercept term of the linear asymptote.

For M/M/1/K queues our results are based on the deviation matrix of the generator. It turns out that

by viewing output processes as Markovian Point Processes and considering the deviation matrix, one can

obtain explicit expressions for the intercept term, together with some further insight regarding the BRAVO

(Balancing Reduces Asymptotic Variance of Outputs) effect. For M/G/1 queues our results are based on a

classic transform of D. J. Daley. In this case we represent the intercept term of the variance curve in terms of

the first three moments of the service time distribution. In addition we shed light on a conjecture of Daley,

dealing with characterization of stationary M/M/1 queues within the class of stationary M/G/1 queues, based

on the variance curve.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many models in applied probability and stochastic operations re-

search involve counting processes. Such processes occur in supply

chains, health care systems, communication networks as well as many

other contexts involving service, logistics and/or technology. The

canonical counting process example is the Poisson process. Gener-

alizations include renewal processes, Markovian Point Processes (see

for example Latouche & Ramaswami, 1999, Section 3.5 or Asmussen,

2003, Section XI.1), or general simple point processes on the line (see

for example Daley & Vere-Jones, 2003).

Sometimes counting processes are used in their own right, while at

other times they constitute components of more complicated mod-

els such as queues, population processes or risk models. In other

instances, counting processes are implicitly defined and constructed

through applied probability models. For example, a realization of a
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queue induces additional counting processes such as the departure

process, {D(t), t ≥ 0}, counting the number of serviced customers in

the queue until time t.

Departure counting processes of queues have been heavily stud-

ied in applied probability and operations research. Classic applied

probability surveys are Daley (1976) and Disney and Konig (1985).

More recent studies in operations research are Hendricks (1992),

Tan (1999) and Tan (1997) where the authors consider departures

in and within manufacturing production lines. Indeed, from an oper-

ational viewpoint, quantification of the variability of flows within

a network is key. A similar comment applies to the flows of fin-

ished products at the end of the production process. From a the-

oretical perspective, there remain some open questions about the

ability to characterize {D(t)} as a Markovian Point Process, as in Bean

and Green (2000), Bean, Green, and Taylor (1998) and Olivier and

Walrand (1994). Further, the discovery of the BRAVO effect (Bal-

ancing Reduces Asymptotic Variance of Outputs) has motivated re-

search on the variability of departure processes of queues, partic-

ularly in critically loaded regimes. Recent papers on this topic are

Al Hanbali, Mandjes, Nazarathy, and Whitt (2011), Daley (2011),
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Daley, van Leeuwaarden, and Nazarathy (2014), Nazarathy (2011)

and Nazarathy and Weiss (2008).

Next to the mean curve, m(t) = E[D(t)], an almost equally impor-

tant performance measure of a counting processes is the variance

curve, v(t) = Var
(
D(t)

)
. For example, for a Poisson process with rate

α, the variance curve

v(t) = αt

is the same as the mean curve. For more complicated counting pro-

cesses, the variance curve is not as simple and is not the same as

the mean curve. For example, for a stationary (also known as equi-

librium) renewal-process with inter-renewal times distributed as the

sum of two independent exponential random variables, each with

mean (2α)−1, we have

m(t) = αt − 1

4
+ 1

4
e−4αt, v(t) = α

1

2
t + 1

8
− 1

8
e−4αt.

For the ordinary case of the same renewal process (the first inter-

renewal time is distributed as all the rest) the variance curve is

v(t) = α
1

2
t + 1

16
− te−4αt − 1

16
e−8αt.

These explicit examples are taken from Cox (1962, Section 4.5). In

fact, for general, non-lattice, renewal processes (both equilibrium and

ordinary), with inter-renewal times having a finite second moment,

with squared coefficient of variation c2, and mean α−1, it is well

known that,

v(t) = αc2t + o(t), (1)

as t → ∞ (which is the limiting regime used throughout this paper).

However, in general, a finer description of v(t) (through the o(t) term)

is typically not as simple as in the examples above.

If the third moment of the inter-renewal time is finite, then

v(t) =
⎧⎨
⎩

αc2t + 5

4
(c4 − 1)− 2

3
(γ c3 − 2)+ o(1), for the equilibrium case,

αc2t + 1

2
(c4 − 1)− 1

3
(γ c3 − 2)+ o(1), for the ordinary case,

(2)

where γ is the skewness coefficient of the inter-renewal time.1 We

remind the reader that for exponential random variables (making

the renewal process a Poisson process), c2 = 1 and γ = 2, and the

ordinary and equilibrium versions of a Poisson process are identi-

cal. See Asmussen (2003) and Daley and Vere-Jones (2003) for more

background on renewal processes. Eq. (2) appears under a slightly

different representation in Cox (1962) and was essentially first found

in Smith (1959). Generalizations of renewal processes are in Brown

and Solomon (1975), Daley and Mohan (1978) and Hunter (1969).

The above examples indicate that, for counting processes in gen-

eral, it is likely to be fruitful to look for an asymptotic expression for

the variance curve of the form

v(t) = vt + b + o(1). (3)

We refer to v as the asymptotic variance rate and to b as the intercept

term. A point to observe is that, for a renewal process, b depends on the

version of the renewal process (ordinary vs. equilibrium) while v does

not. Since the latter depends on the initial conditions, we generally

employ the notation be for the stationary (equilibrium) system, b0

for systems starting empty and bθ for systems with arbitrary initial

conditions.

1 The skewness coefficient of a random variable X is E[( X−E[X]√
Var(X)

)3].

Moving on from renewal processes to implicitly defined counting

processes, the variance curve is typically more complicated to de-

scribe and characterize. For example, while the output of a stationary

M/M/1 queue with arrival rate λ and service rate μ is simply a Pois-

son process with rate λ (see Kelly, 1979), the variance curve when

the system starts empty at time 0 is much more complicated than

v(t) = λt. It can be represented in terms of integrals of expressions

involving Bessel functions of the first kind, and requires several lines

to be written out fully (as in Theorem 5.1 of Al Hanbali et al., 2011).

Nevertheless (see Theorem 5.2 in Al Hanbali et al., 2011) the curve

can be sensibly approximated as follows:

v(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λt − ρ

(1 − ρ)2
+ o(1), if ρ < 1,

2

(
1 − 2

π

)
λt −

√
λ

π
t1/2 + π − 2

4π
+ o(1), if ρ = 1,

μt − ρ

(1 − ρ)2
+ o(1), if ρ > 1,

(4)

where ρ = λ/μ.

As observed from the formula above, it may be initially quite sur-

prising that the asymptotic variance rate is reduced by a factor of

2(1 − 2/π) ≈ 0.73 when ρ changes from being approximately 1 to

exactly 1. This is a manifestation of the BRAVO effect. BRAVO was

first observed for M/M/1/K queues in Nazarathy and Weiss (2008)

in which case, as K → ∞, the factor is 2/3, a fact that we confirm in

this paper. It was later analyzed for M/M/1 queues and more generally

GI/G/1 queues in Al Hanbali et al. (2011). BRAVO has been numerically

conjectured for GI/G/1/K queues in Nazarathy (2011), and observed

for multi-server M/M/s/K queues in the many-server scaling regime

in Daley et al. (2014).

Our focus in this paper is on the more subtle intercept term b.

For a stationary M/M/1 queue, {D(t)} is a Poisson process and thus

be = 0. As opposed to that, for an M/M/1 queue starting empty, it

follows from (4) that b0 = −ρ/(1 − ρ)2 as long as ρ �= 1. When ρ = 1,

we see from (4) that the variance curve does not have the asymptotic

form (3). This can happen more generally. If, for example, there is

sufficient long range dependence in the counting process, then the

variance can grow super-linearly (see Daley & Vesilo, 1997 for some

examples). This demonstrates that the asymptotic variance rate, v,

and the intercept term, b, need not exist for every counting process.

Nevertheless, for a variety of models and situations, both v and b exist,

and thus the linear asymptote is well-defined. In such cases, having a

closed formula is beneficial for performance analysis of the model at

hand.

We are now faced with the challenge of finding the intercept

term for other counting processes generated by queues. In this pa-

per we carry out such an analysis for two models related to the

M/M/1 queue: a finite capacity M/M/1/K queue, and an infinite capac-

ity M/G/1 queue. Besides obtaining explicit formulas for be, b0 and bθ ,

our investigation also pinpoints some of the analytical challenges in-

volved and raises some open questions. Here is a summary of our main

contributions.

1.1. M/M/1/K queues

In this case the departure process is a Markovian Point Process.

The linear asymptote is then given by formulas based on the matrix

�− = (1π − �)−1, where � is the generator matrix of the (finite)

birth-death process, π is its stationary distribution taken as a row

vector, and 1 is a column vector of 1’s. In the case where ρ = 1,

the distribution π is uniform and an explicit expression for �− was
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