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a b s t r a c t

In order to maintain a unit that is running successive works with cycle times, this paper classifies its replace-

ment policies into three types: (Type I) Replacement with interrupted cycles; (Type II) replacement with

complete works; and (Type III) replacement with incomplete works. Type I is typically done at a continuous

time T while Type II is executed at a discrete number N of working cycles. Type III is proposed as an improve-

ment of Type I, which can be done at discrete working cycles. For each type, age and periodic replacement

models are respectively observed. It is shown that Type I is more flexible than Type II and costs less than

Type III. However, modified replacement costs, i.e., without penalty of operational interruptions, are obtained

for Types II and III as critical points at which their policies should be adopted. All discussions are presented

analytically and numerical examples are given when each cycle time is exponential and the failure time has

a Weibull distribution.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Manufacturing systems with performance degradation and main-

tenance strategy are commonly encountered in practice. To seek

balance between failure losses and maintenance costs, preventive

maintenances have been investigated extensively in the past decades.

Recently, a methodical survey of maintenance models and their op-

timizations in reliability theory was done (Nakagawa, 2005). Other

published books (Frenkel, Karagrigoriou, Lisnianski, & Kleyner, 2013;

Kobbacy & Murthy, 2008; Kuo & Zuo, 2003; Manzini, Regattieri, Pham,

& Ferrari, 2010; Nakagawa, 2008; Osaki, 2002; Pham, 2011; Wang &

Pham, 2007) collected many kinds of reliability models and mainte-

nance policies in theory and their applications in industrial systems.

Although some categories of maintenance policies (Wang, 2002;

Wu & Zuo, 2010) and several overviews of recent maintenance models

(Ahmad & Kamaruddin, 2012; Shafiee & Chukova, 2013; Wang, 2012)

have been surveyed, it can be classified in most above models that

systems are maintained or replaced before failure at some continuous

measures (i.e., age, operating time, running distance, damage thresh-

old, condition level, repair cost, etc.), at some discrete quantities (i.e.,
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number of usage, works, shocks, faults, failures, repairs, etc.), or at

some bivariate maintenance times such as optimized t∗ along with

n∗ (Chen, 2012; Sheu & Chang, 2010; Sheu, Li, & Chang, 2012; Zhang,

Yam, & Zuo, 2007). Taking aircraft engines as an example, appropriate

maintenances are usually scheduled at a total hours of operations or at

a specified number of flights since the last major overhaul (Duchesne

& Lawless, 2000). This also could be applied to maintenance strategies

for the systems whose operational functions deteriorate with either

or both causes of age and use (Nakagawa, 2008). In other words, it

is advisable to maintain or replace such systems before catastrophic

failure when their operations reach a certain usage time or a specified

number of uses.

However, there is no theoretical study to tell us whether or not

maintenances scheduled at continuous measures are more predom-

inant than those at discrete quantities, which is the first problem

to be considered in this paper. On the other hand, the system usu-

ally executes works with successive cycles, e.g., number N of random

cycles, so that it is difficult to specify the quality of maintenance or

replacement policies (Wu & Clements-Croome, 2005) without consid-

ering the factor of executed works. The replacement policies that are

scheduled along with working cycles (Chen, Mizutani, & Nakagawa,

2010) were modeled. Replacement models planned with continu-

ous or discrete policies using the approach of whichever triggering

event occurs last were discussed recently (Zhao, Nakagawa, & Zuo,

2014). However, when the system is operating for some successive
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works without stops, it is better to do maintenance after several works

are completed even though the maintenance time has arrived (Zhao

& Nakagawa, 2013). That is, maintenances scheduled at continuous

times need to be modified according to discrete cycles to satisfy work

completions, which is the second problem to be considered in this

paper.

In order to maintain a unit that is running successive works with

cycle times, this paper classifies the following replacement policies

scheduled at continuous and discrete times into three types:

I. Replacement with interrupted cycles: The unit is replaced be-

fore failure at a planned time T , which is called continuous age

replacement (CAR).

II. Replacement with complete works: The unit is replaced before

failure at completion of the Nth working cycle, which is called

discrete age replacement (DAR).

III. Replacement with incomplete works: The unit is replaced be-

fore failure at the first completion of some working cycle over a

planned time T , which is called age replacement with overtime

(ARO).

For each type, periodic replacement policies are also considered in

a similar way, that is, continuous periodic replacement (CPR), discrete

periodic replacement (DPR), and periodic replacement with overtime

(PRO) are defined and modeled in the following sections. Joint deter-

minations of Types I and II, and Types II and III for age and periodic

replacement models under the assumption “whichever occurs first”

are also discussed.

Obviously, policy defined in Type III is an improvement of that in

Type I, which can be done at discrete working cycles. Policy in Type II

guarantees completion of all works, e.g., N works, while part of works

can be completed under Type III, but cycles are always interrupted

under Type I. It will be shown that Type I is more flexible than Type II

and costs less than Type III, when replacement costs for three types

are originally supposed as order of “Type I ≤ Type II” and “Type I ≤
Type III”. However, the order of penalty cost for operational interrup-

tion would be “Type I > Type III > Type II”. So that how to find modified

replacement costs (i.e., the replacement cost without penalty of op-

erational interruption) for Types II and III as critical points at which

their policies should be adopted become the main purpose of this

paper.

2. Age replacement

Consider a unit that is running successive works with cycle times

Yj (j = 1, 2, . . .), where random variables Yj have an identical distri-

bution G(t) ≡ Pr{Yj ≤ t} with finite mean 1/θ (0 < θ < ∞). The unit

deteriorates with operation and has a failure time X according to a

general distribution F(t) ≡ Pr{X ≤ t} with finite mean μ (0 < μ < ∞),
which is independent of Yj.

To model the following replacement policies, we denote G(j)(t)(j =
1, 2, . . .) be the j-fold Stieltjes convolution of G(t) with itself and

G(0)(t) ≡ 1 for t ≥ 0, g(t) ≡ dG(t)/dt, g(j)(t) ≡ dG(j)(t)/dt, and rj(t) ≡
g(j)(t)/[1 − G(j)(t)], where rj(t)dt represents the probability that the

unit completes the jth working cycle in [t, t + dt], given that it has

been running for the jth cycle at time t. In addition, let h(t) ≡ f (t)/F(t)
be the failure rate of F(t) and H(t) ≡ ∫ t

0 h(u)du be cumulative hazard

rate, where f (t) ≡ dF(t)/dt and F(t) ≡ 1 − F(t). It is also assumed that

h(t) increases strictly from h(0) = 0 to h(∞) ≡ limt→∞ h(t).
Suppose that when the unit fails, its failure is immediately de-

tected, and then CR (corrective replacement) is done. As PR (preven-

tive replacement) policies, we firstly model the joint policies of Types

I and II into age replacement, i.e., the unit is replaced before failure at a

planned time T (0 < T ≤ ∞)or at the completion of Nth (N = 1, 2, . . .)
working cycle, whichever occurs first. The expected replacement cost

rate is, from Chen et al. (2010),

C1(T; N)

= cT + (cF − cT)
∫ T

0 [1 − G(N)(t)]dF(t)+ (cN − cT)
∫ T

0 F(t)dG(N)(t)∫ T

0 [1 − G(N)(t)]F(t)dt
,

(1)

where cF is CR cost at failure, and cT (cF > cT) and cN (cF > cN) are PR

costs at time T and at number N, respectively.

Clearly, C1(T; N) includes the respective Type I and Type II age

replacement models as T → ∞ or N → ∞. That is, if N = ∞, then the

policy corresponds to PR that is made at time T , which is called age

replacement (Barlow & Proschan, 1965) or CAR in Type I, and the

expected cost rate is

CCAR
1 (T) ≡ lim

N→∞
C1(T; N) = cF − (cF − cT)F(T)∫ T

0 F(t)dt
. (2)

On the other hand, if T = ∞, the policy corresponds to PR that is made

at number N of working cycles, which is called DAR in Type II, and the

expected cost rate is

CDAR
1 (N) ≡ lim

T→∞
C1(T; N)

= cF − (cF − cN)
∫ ∞

0 G(N)(t)dF(t)∫ ∞
0 [1 − G(N)(t)]F(t)dt

(N = 1, 2, . . .). (3)

2.1. Optimal policies

We find optimal time T∗
1 and number N∗

1 which minimizes CCAR
1 (T)

in (2) and CDAR
1 (N) in (3), respectively. From the results of (Nakagawa,

2005), if h(∞) > cF/[μ(cF − cT)], then there exists a finite and unique

T∗
1 (0 < T∗

1 < ∞) which satisfies∫ T∗
1

0

[h(T)− h(t)]F(t)dt = cT

cF − cT
, (4)

and the resulting cost rate is

CCAR
1 (T∗

1) = (cF − cT)h(T∗
1). (5)

From the inequality C1(N + 1)− C1(N) ≥ 0,

QN

∫ ∞

0

[1 − G(N)(t)]F(t)dt

−
∫ ∞

0

[1 − G(N)(t)]dF(t) ≥ cN

cF − cN
(N = 1, 2, . . .), (6)

where

QN(T) ≡
∫ T

0 [G(N)(t)− G(N+1)(t)]dF(t)∫ T

0 [G(N)(t)− G(N+1)(t)]F(t)dt
≤ h(T),

and QN ≡ limT→∞ QN(T). It has been proved (Chen et al., 2010) that

if QN increases strictly with N to Q∞, then the left-hand side of (6)

also increases to μQ∞ − 1. Thus, if Q∞ > cF/[μ(cF − cN)], then there

exists a finite and unique minimum N∗
1 (1 ≤ N∗

1 < ∞) which satisfies

(6), and the resulting cost rate is

(cF − cT)QN∗
1−1 < CDAR

1 (N∗
1) ≤ (cF − cT)QN∗

1
. (7)

In particular, when G(t) = 1 − e−θ t , i.e., G(N)(t) = ∑∞
j=N

[(θ t)j/j!]e−θ t (N = 1, 2, . . .),

QN(T) =
∫ T

0 (θ t)Ne−θ tdF(t)∫ T

0 (θ t)Ne−θ tF(t)dt

increases strictly with N and converges to h(T) as N → ∞, and hence

QN increases with N to h(∞). Thus, if h(∞) > cF/[μ(cF − cN)], then

there exists a finite and unique minimum N∗
1 (1 ≤ N∗

1 < ∞) which

satisfies (6).

Note that if the condition h(∞) > cF/[μ(cF − ci)] (i = T, N) holds,

there exist both finite T∗
1 and N∗

1 that minimize their respective cost

rates.
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