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a b s t r a c t

Model risk has a huge impact on any risk measurement procedure and its quantification is therefore a crucial

step. In this paper, we introduce three quantitative measures of model risk when choosing a particular

reference model within a given class: the absolute measure of model risk, the relative measure of model risk

and the local measure of model risk. Each of the measures has a specific purpose and so allows for flexibility.

We illustrate the various notions by studying some relevant examples, so as to emphasize the practicability

and tractability of our approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The specification of a model is a crucial step when measuring fi-

nancial risks to which a portfolio, or even an institution, is exposed.

Common methodologies, such as Delta-Normal or simulation meth-

ods, are based on the choice of a particular model for the risk factors,

including for instance, equity, interest-rate or credit risk. Even when

using historical methods, we implicitly rely on the empirical distri-

bution as the reference model. However, it is observed that the final

risk figure is often quite sensitive to the choice of the model. The

hazard of working with a potentially not well-suited model is re-

ferred to as model risk. The study of the impact of model risk and its

quantification is an important step in the whole risk measurement

procedure. In particular, in the aftermath of the recent financial cri-

sis, understanding model uncertainty when assessing the regulatory

capital requirements for financial institutions seems to be crucial. The

main goal of this paper is precisely to propose some ways to quantify

model risk when measuring financial risks for regulatory purposes.

We stress that our objective is not to measure risk in the presence of

model uncertainty, but to quantify model risk itself.

The question of the impact of model risk has received increasing

attention in recent years. In particular, the significance of minimum

risk portfolios has been questioned when studying the problem of

optimal asset allocation: several authors (among them El Ghaoui, Oks,

& Oustry, 2003; Fertis, Baes, & Lüthi, 2012; Zymler, Kuhn, & Rustem,

2013) have recently considered this issue from a robust optimization

perspective.
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Our approach to assessing model risk is very general. It is based

on the specification of a set of alternative models (or distribu-

tions) around a reference one. Note that Kerkhof, Melenberg, and

Schumacher (2010) propose measuring model risk in a similar set-

ting by computing the worst-case risk measure over a tolerance set

of models. Our approach differs, however, as we introduce different

measures of model risk, based on both the worst- and best-case risk

measures, in order to serve different purposes.

Examples of the set of alternative models we can consider include

parametric or non-parametric families of distributions, or small per-

turbations of a given distribution. If we believe in a parametric model,

we can consider all distributions within the family whose parameters

are in the confidence intervals derived from the data. By doing this,

we are accounting only for the estimation risk (see Kerkhof et al.,

2010). If, on the other hand, we completely believe in some esti-

mated quantities, without relying on confidence intervals, we can

consider all possible distributions of any form which are in accor-

dance with those quantities. We can also consider those distributions

which are not too far from a reference one, according to some sta-

tistical distance (the uniform distance, for instance), or all joint dis-

tributions that have the same marginals as the reference one. This

latter example leads to the relevant problem of aggregation of risks

in a portfolio (see Embrechts, Puccetti, & Rüschendorf, 2013). We

could even specify different pricing models if the portfolio contains

derivatives.

Note that the scope of our approach is very wide, going beyond

issues pertaining just to statistical estimation. Furthermore, the as-

sessment of model risk should not be confused with the analysis of

statistical robustness of a risk measurement procedure (as in Cont,

Deguest, & Scandolo, 2010), even though the two concepts are re-

lated. Indeed, the reference distribution is an input in our approach,

while in Cont et al. (2010) it is the result of a statistical estimation

process which is part of the definition of robustness itself.

http://dx.doi.org/10.1016/j.ejor.2014.10.032

0377-2217/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ejor.2014.10.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.10.032&domain=pdf
mailto:p.m.barrieu@lse.ac.uk
mailto:giacomo.scandolo@univr.it
http://dx.doi.org/10.1016/j.ejor.2014.10.032


P. Barrieu, G. Scandolo / European Journal of Operational Research 242 (2015) 546–556 547

In order to assess model risk, we introduce three different mea-

sures: the absolute measure of model risk, the relative measure of

model risk and the local measure of model risk. Our aim is to provide

a quantitative measure of the model risk we are exposed to in choos-

ing a particular reference model within a given class when working

with a specific risk measure. All three measures are pure numbers,

independent from the reference currency. They take non-negative

values and vanish precisely when there is no model risk. Each of the

measures we propose has a specific purpose and therefore can be

used in different contexts: whilst the absolute measure is cardinal

and gives a quantitative assessment of model risk, both the relative

measure and the local measure are ordinal and allow for comparison

of different situations, which may have different scales. If we con-

sider different possible models as references, the use of the relative

measure is probably the more natural measure to use as it will give

a clear ranking between the alternatives. When the reference model

is almost certain, the local measure becomes an obvious choice as it

focuses on the very local properties around the reference model.

The measures of model risk we propose can be applied in dif-

ferent contexts. To briefly illustrate this flexibility, we mention here

two examples: first, GARCH Value-at-Risk (VaR) procedures and then,

computation of Additional Valuation Adjustments (AVA).

Firstly, within the standard GARCH approach for market VaR es-

timation, the mean μ̂ and standard deviation σ̂ (or volatility) of the

returns are estimated using a GARCH model; moreover, the inno-

vations, i.e. the returns standardized by the estimated means and

volatilities, are assumed to be normally distributed. Therefore, the

VaR is computed under the assumption that returns are normally dis-

tributed with parameters μ̂ and σ̂ . The model risk that arises from the

normality assumption can be quantified using one of the measures

presented in this paper. As alternative models, we may consider all

distributions (not necessarily normal) with mean μ̂ and standard

deviation σ̂ .

Secondly, let us consider the recent Capital Requirements Direc-

tives (CRD) for the financial services industry, enforced since 2013 in

the EU. Under the CRD, financial institutions are required to calcu-

late AVA in all situations in which the market value of an asset is not

clear. This should reflect the model risk involved in the valuation of

the position. In particular, the last draft of the Regulatory Technical

Standard1 issued by the European Banking Association proposes that:

“institutions shall calculate the model risk AVA by determining a range

of plausible valuations produced from alternative appropriate modelling

and calibration approaches.” (Article 11). So, by formally replacing risk

measures with valuations in our framework, the measures of model

risk we propose could be effectively used for this purpose.

The rest of the paper is structured as follows. In Section 2, as a

motivating example, we show how the Basel multiplier can be seen as

a rough measure of model risk. In Section 3 we present the definition

and the main properties of absolute and relative measures of model

risk. Some examples, using alternative sets of distributions based

on fixed moments or small perturbations, are provided in Section 4.

In Section 5 we discuss local measures of model risk and Section 6

concludes.

2. A motivating example

In this section, we start by looking at the Basel multiplier, intro-

duced by the Basel Committee as an ingredient in the assessment

of the capital requirements for financial institutions. As we will see,

this multiplier is closely related to probabilistic bounds giving some

upper limit to classical risk measures such as the Value-at-Risk and

the Expected Shortfall. These preliminary remarks will motivate our

1 Available at www.eba.europa.eu.

approach when introducing some measures for model risk in the next

section.

2.1. The Basel multiplier

Within the Basel framework, financial institutions are allowed to

use internal models to assess the capital requirement due to market

risk. The capital charge is actually the sum of six terms taking into

account different facets of market risk. The term that measures risk

in usual conditions is given by the following formula:

CC = max

{
VaR(0)

,
λ

60

60∑
i=1

VaR(−i)

}
, (1)

where VaR(0) is the portfolio’s Value-at-Risk (of order 1 percent and

with a 10-day horizon) computed today, while VaR(−i) is the figure

we obtained i days ago.

The constant λ is called the multiplier and it is assigned to each

institution by the regulator, which periodically revises it. Its mini-

mum value is 3, but it can be increased up to 4 in the event that the

risk measurement system provides poor back-testing performances.

Given the magnitude of λ, it is apparent that in normal conditions the

second term is the leading one in the maximum appearing in (1).

2.2. Chebishev bounds and the multiplier

Stahl (1997) offered a simple theoretical justification for the mul-

tiplier to be chosen in the range [3, 4]. Here, we briefly summarize his

argument. Let X be the random variable (r.v.) describing the Profits-

and-Losses of a portfolio due to market risk. If the time-horizon is

short, it is usually assumed that E[X] = 0, so that

VaRα(X) = σVaRα(̃X),

where σ 2 is the variance of X and X̃ = X/σ is standard, i.e. it has zero

mean and unit variance. While σ is a matter of estimation, VaRα(̃X)
depends on the assumption we make about the type of the distribution

of X (normal, Student-t, etc.).

An application of the Chebishev inequality to X̃ yields

P(̃X � −q)� P(|X̃| � q)� 1

q2
, q > 0. (2)

Recalling the definition of VaR, it readily follows VaRα(̃X)� 1/
√

α, or

VaRα(X)� σ√
α

. (3)

The right hand side of the above inequality thus provides an upper

bound for the VaR of a random variable having mean 0 and vari-

ance σ 2. It can be compared with the VaR we obtain by using the

delta-normal method, which is very commonly employed in practice.

According to this method, X̃ is normally distributed and therefore

VaRα(X) = σ |zα| (α < 0.5),

where zα = �−1(α) is the quantile of a standard normal. The graph of

the ratio

σ/
√

α

σ |zα| = 1

|zα|√α
(4)

is reported below (see Fig. 1, a). We can see that for usual values of α
(i.e. from 1 percent to 5 percent), the ratio broadly lies in the interval

[3, 4]. Therefore, if the VaR computed under normal assumptions is

multiplied by λ, we obtain an upper bound for the worst possible VaR

compatible with partial information (mean and variance) we have.

We can then extend this argument to the Expected Shortfall.2

Indeed, by integrating inequality (3), we obtain

ESα(X) = 1

α

∫ α

0

VaRu(X)du � σ

α

∫ α

0

du√
u

= 2σ√
α

. (5)

2 Also see Leippold and Vanini (2002).
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