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a b s t r a c t

This paper studies planning problems for a group of heating systems which supply the hot water demand for

domestic use in houses. These systems (e.g. gas or electric boilers, heat pumps or microCHPs) use an external

energy source to heat up water and store this hot water for supplying the domestic demands. The latter

allows to some extent a decoupling of the heat production from the heat demand. We focus on the situation

where each heating system has its own demand and buffer and the supply of the heating systems is coming

from a common source. In practice, the common source may lead to a coupling of the planning for the group

of heating systems. On the one hand, the external supply of the energy for heating up the water may have

to be bought by an energy supplier on e.g. a day-ahead market. As the price of energy varies over time on

such markets, this supplier is interested in a planning which minimizes the total cost to supply the heating

systems with energy. On the other hand, the bottleneck to supply the energy also may be the capacity of the

distribution system (e.g. the electricity networks or the gas network). As this has to be dimensioned for the

maximal consumption, in this case it is important to minimize the maximal peak.

The two mentioned coupling constraints for supplying the energy for producing the heat, lead to two

different objectives for the planning of the group of heating systems: minimizing cost and minimizing the

maximal peak. In this paper, we study the algorithmic complexity of the two resulting planning problems. For

minimizing costs, a classical dynamic programming approach is given which solves the problem in polynomial

time. On the other hand, we prove that minimizing the maximal peak is NP-hard and discuss why this problem

is hard. Based on this, we show that this problem becomes polynomial if all heating systems have the same

consumption of energy when turned on. Finally, we present a Fix Parameter Tractable (FPT) algorithm for

minimizing the maximal peak which is linear in the number of time intervals.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In modern society, a significant amount of energy is consumed for

heating water (Aguilar, White, & Ryan, 2005). Almost every building

in developed countries is connected to a district heating system or

equipped with appliances for heating water locally. Typical appliances

for heating water are electrical and gas heating systems, heat pumps

and Combined Heat and Power units (microCHP). The resulting water

is stored in buffers to be prepared for demands of inhabitants.

A schematic overview of a local heating system is presented in

Fig. 1. It consists of

• a supply which represents some source of energy (electricity, gas),
• a converter which converts the energy into heat (hot water),
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• a buffer which stores heat for later usage and
• a demand which represents the consumption profile of heat.

A more formal definition of the used model for local heating and the

used parameters and variables is given in Section 1.1. For the presen-

tation of the model electricity and heat is used to distinguish between

consumed and produced energy, but the given model can handle arbi-

trary types of energy. Furthermore, even though the presented model

of the local heating system is quite simple, it cannot only be applied

for heating water but has many other applications, e.g. heating de-

mand of houses, fridges and freezers and inventory managements.

Section 1.1 presents more details about those applications.

The combination of a heating device and a buffer gives some

freedom in deciding when the heat has to be produced. To use this

freedom in a proper way, different objectives may be considered in

practice. On one hand, the electricity used to heat water has to be

bought. Although these prices are nowadays mostly fixed for private

costumers, the supply companies delivering the electricity are faced

with variable prices resulting e.g. from a day-ahead market. This leads

http://dx.doi.org/10.1016/j.ejor.2014.10.040
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Fig. 1. Schematic picture of heating systems split into converters, buffers and demands.

A group of those heating systems is connected to a common supply of energy.

to the objective of minimizing the total cost of electricity consumed

by all heating systems in the area of the supply company during the

planning period. Note that in cost or auction based control algorithms

for Smart Grids, this objective is also used (see e.g. Molderink, Bakker,

Bosman, Hurink, & Smit, 2010). On the other hand, the energy used

for heating is transported from a supply to the heating systems by

electrical networks or gas pipes. These transport media have to be

able to transport all the used energy and therefore have to be dimen-

sioned for the maximal consumption peak of all houses connected to

the transport network. Thus, minimizing the maximal consumption

over all these houses may decrease investments in the distribution

networks.

The above mentioned aspects lead to two basic planning problems

for a group of heating systems which are both based on the same

model but they differ in the objective function. The first problem is

called minimizing cost. The second one is minimizing peak where

peak is the maximal consumption of electricity over the planning pe-

riod. Those problems are formally defined in Section 1.1. We show

that the algorithmic complexity of those problems is substantially

different, although the problems differ only by the objective func-

tion. The use of a classical dynamic programming approach (see e.g.

Cormen, Leiserson, Rivest, & Stein, 2001) gives a simple polynomial-

time algorithm. On the other hand, we proof that minimizing peak

is NP-hard and we discuss why minimizing peak makes the problem

hard. We show that minimizing peak becomes polynomial if all con-

verters have the same consumption of electricity when turned on.

We also present a dynamic programming algorithm for the general

case of minimizing peak which is linear in the number of time in-

tervals and the multiplicative constant depends only on the number

of heating systems and the ratio between capacity and production of

the heating systems, meaning that the algorithm is a Fix Parameter

Tractable (FPT) algorithm.

1.1. Problem statement and results

In this section we present a mathematical description of the stud-

ied model, possible applications of this model and a summary of the

results of this paper. The used parameters and decision variables are

summarized the following table.

C set of heating systems

T set of time intervals

Ec consumed electricity of converter c if turned on

Hc produced heat of converter c if turned on

Dc,t heat demand from the heating system c in time interval t

Pt price of electricity in time interval t

Lc,t lower bound on the state of charge of buffer c in time

interval t

Uc,t upper bound on the state of charge of buffer c in time

interval t

xc,t operational state of the converter xc,t

sc,t state of charge of buffer c in the beginning of time interval t

First of all, we consider a discrete time model for the considered

problem, meaning that we split the planning period into T time inter-

vals of the same length. We consider sets C = {1, . . . , C} of C heating

systems and T = {1, . . . , T} of T time intervals. In this paper, the letter

c is always an index of a heating system and t is an index of a time in-

terval. For mathematical purposes, we separate a heating system into

a converter, a buffer and a demand; see Fig. 1. We say “a converter c”

or “a buffer c” or “a demand c” to refer to the devices of the heating

system c ∈ C.

We consider a simple converter which has only two states: In

every time interval the converter is either turned on or turned off. The

amount of consumed electricity is Ec and the amount of produced heat

(or any other form of energy) is Hc during one time interval in which

the converter c ∈ C is turned on. If the converter is turned off, then

it consumes and produces no energy. Let xc,t ∈ {0, 1} be the variable

indicating whether the converter c ∈ C is running in time interval

t ∈ T .

The state of charge of a buffer c ∈ C at the beginning of time interval

t ∈ T is denoted by sc,t which represents the amount of heat in the

buffer. Note that sc,T+1 is the state of charge at the end of planning

period. The state of charge sc,t is limited by a lower bound Lc,t and an

upper bound Uc,t . Those two bounds are usually constant over time:

the upper bound Uc,t is the capacity of buffer and the lower bound

Lc,t is mostly zero. But it may be useful to allow different values, e.g.

a given initial state of charge can be modeled by setting Lc,1 and Uc,1

equal to the initial state. In this paper, we assume that Lc,1 = Uc,1, so

the initial state of charge sc,1 is fixed.

The amount of consumed heat by the inhabitants of the house

from heating system c ∈ C during time interval t ∈ T is denoted

by Dc,t . This amount is assumed to be given and is called the de-

mand of heating system c. Furthermore, the price of a unit of elec-

tricity consumed by a converter in time interval t ∈ T is denoted

by Pt . We discuss in Section 5 that different prices of electric-

ity for different converters do not influence the developed algo-

rithms. In this paper, we study off-line problems, so we assume that

both demands Dc,t and prices Pt are given for the whole planning

period.

The operational variables of the converters xc,t and the states of

charge of buffers sc,t are restricted by the following invariants.

sc,t+1 = sc,t + Hcxc,t − Dc,t for c ∈ C, t ∈ T (1)

Lc,t ≤ sc,t ≤ Uc,t for c ∈ C, t ∈ T ∪ {T + 1} (2)

xc,t ∈ {0, 1} for c ∈ C, t ∈ T (3)

Eq. (1) is the charging equation of the buffer. During time interval

t ∈ T , the state of charge sc,t of a buffer c ∈ C is increased by the

production of the converter which is Hcxc,t and it is decreased by the

demand Dc,t . Eqs. (2) and (3) ensure that the domains of variables sc,t

and xc,t , respectively, are taken into account.
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