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AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

a r t i c l e i n f o

Article history:

Received 10 May 2014

Accepted 6 November 2014

Available online 20 November 2014

Keywords:

Conditional Value at Risk

Expected Shortfall

Measures of risk

Risk management

a b s t r a c t
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1. Introduction

One of the natural ideas to reduce risk of a position in stock is

to buy put options. By doing so one can cut off the undesirable sce-

narios, while leaving oneself open to the positive outcomes. A choice

of a high strike price of the put option does cut off more of the un-

favourable states, but at the same time produces higher hedging costs.

The question of how to balance the two trends so that the level of risk

measured by Value at Risk (VaR) is minimised was investigated by

Ahn, Boudoukh, Richardson, and Whitelaw (1999).

The Value at Risk, which is the worst case scenario of loss an

investment might incur at a given confidence level, has established

its position as one of the standard measures of risk, and is widely

used throughout the field of finance and risk management. One of its

shortcomings is that it neglects potential severity of unlikely events.

Another, that it is not sub-additive, and is thus not a coherent risk

measure (Artzner, Delbaen, Eber, & Heath, 1999). Its most common

modification to achieve these goals is the Conditional Value at Risk

(CVaR) (also referred to as ‘Expected Shortfall’), which takes into the

account the average loss exceeding VaR. The CVaR is a coherent risk

measure (the proof can be found in the work of Acerbi & Tasche, 2002).

In this paper we show a mirror result to Ahn et al. (1999), using

CVaR instead of VaR. It turns out that in such setting one can achieve

closed form formulae for CVaR of stock hedged with puts. These can

be used to optimise the position by solving a linear programming

problem.

We restrict our attention to the Black–Scholes model and con-

sider investments in stock and put options. The optimisation of
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CVaR can be carried out under more general assumptions, using also

other securities (as an example see Rockafellar & Uryasev, 2000,

2002). One can also hedge CVaR dynamically (as in the work of

Melnikov & Smirnov, 2012), which provides slightly better results.

Dynamic strategies though require constant rebalancing, which in

practice can be costly. Advantages of our approach are as follows:

its simplicity; closed form analytic formula for CVaR; protection

against risk is very similar to the one attainable using dynamic

strategies.

The paper is organised as follows. Section 2 recalls the results

of Ahn et al. (1999) for hedging of VaR with put options. This section

serves also as preliminaries to the paper. In Section 3 we generalise the

result to use CVaR instead of VaR. The main result of the paper is given

in Theorem 4. The section ends with an example of its application. In

Section 4 we compare our method to the results attainable using

dynamic strategies. They turn out to be close. We finish the paper

with a short conclusion in Section 5.

2. Hedging Value at Risk

In this section we set up our notations and recall the results of Ahn

et al. (1999).

Let X be a random variable, which represents a gain from an in-

vestment. For α in (0, 1), we define the Value at Risk of X, at con-

fidence level 1 − α, as VaRα(X) = −qα(X), where qα(X) is the upper

α-quantile of X.

We consider the Black–Scholes model, where the stock price

evolves according to dS(t) = μS(t)dt + σ S(t)dW(t), with the money

market account dA(t) = rA(t)dt. A European put option with strike

price K and maturity T has payoff P(T) = (K − S(T))+ and costs

P(0) = P(r, T, K, S(0), σ ) = Ke−rT N(−d−)− S(0)N(−d+), (1)
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where

d+ = d+(r, T, K, S(0), σ ) =
ln S(0)

K
+

(
r + 1

2
σ 2

)
T

σ
√

T
, (2)

d− = d−(r, T, K, S(0), σ ) = d+ − σ
√

T,

and N is the standard normal cumulative distribution function.

Assume that we buy x shares of stock and zi put options with

strikes Ki, which cost Pi(t) for i = 1, . . . , n and t = 0, T. Let z, 1 and

P(t) be vectors in R
n defined as

z =

⎡
⎢⎣

z1

...
zn

⎤
⎥⎦ , 1 =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ , P(t) =

⎡
⎢⎣

P1(t)
...

Pn(t)

⎤
⎥⎦ .

The value of our investment at time t is V(x,z)(t) = xS(t)+ zT P(t). The

following theorem can be used to compute VaR for the discounted

gain

X(x,z) = e−rT V(x,z)(T)− V(x,z)(0).

Theorem 1 (Ahn et al., 1999). If zi ≥ 0, for i = 1, . . . , n, and zT 1 ≤ x,

then

VaRα(X(x,z)) = V(x,z)(0)− e−rT(xqα(S(T))− zT qα(−P(T))), (3)

where

qα(−P(T)) = −

⎡
⎢⎣

(K1 − qα(S(T)))+

...
(Kn − qα(S(T)))+

⎤
⎥⎦ . (4)

3. Hedging Conditional Value at Risk

One of the shortcomings of VaR is that it neglects the tail of the

loss distribution. An improvement in this respect is the Conditional

Value at Risk, defined as

CVaRα(X) = 1

α

∫ α

0

VaRβ(X)dβ = − 1

α

∫ α

0

qβ(X)dβ,

with a well known equivalent form

CVaRα(X) = − 1

α
[E(X1{X≤qα(X)})+ qα(X)(α − P(X ≤ qα(X))]. (5)

The CVaR also has the advantage of being a coherent risk measure

(Acerbi & Tasche, 2002; Artzner et al., 1999).

Our aim is to give a mirror result to Theorem 1, using CVaR as the

risk measure. We start with a simple lemma.

Lemma 2. For any q ∈ R,

E

(
S(T)|W(T) ≤ q

√
T
)

= 1

N(q)
S(0)eμT N

(
q − σ

√
T
)

.

Proof. Let Z = W(T)/
√

T. Since P(Z ≤ q) = N(q) > 0,

E(S(T)|Z ≤ q) = 1

P(Z ≤ q)

∫ q

−∞
S(0)e((μ− σ2

2 )T+σ
√

Tx) 1√
2π

e− x2

2 dx

= 1

N(q)
S(0)eμT

∫ q

−∞

1√
2π

e− (x−σ
√

T)2

2 dx

= 1

N(q)
S(0)eμT N

(
q − σ

√
T
)

,

as required.

Let Z be a random variable with standard normal distribution

N(0, 1). To compute CVaRα(X(x,z)), we introduce notations

d
μ
− = d−(μ, T, K, S(0), σ ), d

μ
+ = d

μ
− + σ

√
T,

d
μ,α
− = max(dμ

−,−qα(Z)), d
μ,α
+ = d

μ,α
− + σ

√
T,

Pα(K) = Ke−μT N(−d
μ,α
− )− S(0)N(−d

μ,α
+ ). (6)

We first consider the case when we invest in puts with a single strike

K1 = K.

Proposition 3. If z = [z1], for z1 = z ∈ [0, x], then

CVaRα(X(x,z))

= V(x,z)(0)− 1

α
e(μ−r)T [xS(0)N(qα(Z)− σ

√
T)+ zPα(K)].

Proof. We first observe that

X(x,z) = e−rT(xS(T)+ z(K − S(T))+)− V(x,z)(0). (7)

Since z ≤ x, we see that

s → e−rT(xs + z(K − s)+)− V(x,z)(0) (8)

is a non-decreasing function of s. Also ξ → S(0)exp((μ −
σ 2/2)T + σ

√
Tξ) is increasing. Combining these two facts, taking

Z = W(T)/
√

T,

{X(x,z) ≤ qα(X(x,z))} = {S(T) ≤ qα(S(T))} = {Z ≤ qα(Z)}. (9)

We first prove the claim for z < x. Then (8) is strictly increasing,

therefore P(X(x,z) ≤ qα(X(x,z))) = P(S(T) ≤ qα(S(T))) = α, and

CVaRα(X(x,z)) = −E(X(x,z)|X(x,z) ≤ qα(X(x,z)))

= −E(X(x,z)|Z ≤ qα(Z)) (see (9))

= V(x,z)(0)− e−rT xE(S(T)|Z ≤ qα(Z)) (see (7))

− e−rT zE((K − S(T))+|Z ≤ qα(Z)). (10)

We now compute the last term in (10). Since {S(T) ≤ K} = {Z ≤ −d
μ
−},

E((K − S(T))+|Z ≤ qα(Z))

= 1

α

∫ min(qα(Z),−d
μ
−)

−∞

(
K − S(0)e(μ− σ2

2 )T+σ
√

Tx
) 1√

2π
e−x2

dx

= 1

α

∫ −d
μ,α
−

−∞
K

1√
2π

e−x2

dx − 1

α

∫ −d
μ,α
−

−∞
S(0)e(μ− σ2

2 )T+σ
√

Tx

× 1√
2π

e−x2

dx

= 1

α
KN(−d

μ,α
− )− 1

α
P(Z ≤ −d

μ,α
− )E(S(T)|Z ≤ −d

μ,α
− )

= 1

α
KN(−d

μ,α
− )− 1

α
S(0)eμTN(−d

μ,α
− − σ

√
T) (by Lemma 2)

= 1

α
eμT(Ke−μT N(−d

μ,α
− )− S(0)N(−d

μ,α
+ )).

Substituting the above into (10) and applying Lemma 2 gives the

claim.

We now need to consider the case when z = x. Since for any β ∈
(0, 1), limz↗x qβ(X(x,z)) = qβ(X(x,x)), we obtain

lim
z↗x

CVaRα(X(x,z)) = lim
z↗x

−1

α

∫ α

0

qβ(X(x,z))dβ

= −1

α

∫ α

0

qβ(X(x,x))dβ = CVaRα(X(x,x)).

Hence the result follows from the fact that the formula for

CVaRα(X(x,z)) in the claim is continuous with respect to z.

We can now formulate our main result.
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