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In this paper, a novel and fast algorithm for identifying the Minimum Size Instance (MSI) of the equiva-
lence class of the Pallet Loading Problem (PLP) is presented. The new algorithm is based on the fact that
the PLP instances of the same equivalence class have the property that the aspect ratios of their items
belong to an open interval of real numbers. This interval characterises the PLP equivalence classes and
is referred to as the Equivalence Ratio Interval (ERI) by authors of this paper. The time complexity of
the new algorithm is two polynomial orders lower than that of the best known algorithm. The authors
of this paper also suggest that the concept of MSI and its identifying algorithm can be used to transform
the non-integer PLP into its equivalent integer MSI.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The pallet loading problem (PLP) arises in manufacturing work-
shops (and also in other logistics areas), where small items must be
placed onto a large pallet (Dowsland, 1987a, 1987b; Morabito &
Morales, 1998; Waescher, Haussner, & Schumann, 2006). The PLP
is commonly reduced to its two-dimensional version, in which
identical small rectangular items (boxes) must be packed onto a
large rectangular pallet; items may be rotated 90°, but only orthog-
onal packing is allowed. The aim is to pack as many items onto
the pallet as possible without overlapping any two items. Using
the classification of Dyckhoff (1990) and Waescher et al. (2006),
the problem belongs to class 2/B/O/C and IIPP, respectively. This
type of PLP problem is also known as the Manufacturer’s Pallet
Loading Problem (MPLP) (Ribeiro & Lorena, 2007).

The practical significance of the PLP has been expressed by
many authors (Alvarez-Valdes, Parreno, & Tamarit, 2005; Birgin,
Lobato, & Morabito, 2010; Dowsland, 1987a; Dyckhoff, 1990;
Martins & Dell, 2008; Nelissen, 1993; Ram, 1992; Young-Gun &
Maing-Kyu, 2001) in the course of solving the PLP. In these
publications, the authors state or imply that the only constraint
is the stability and safety of the boxes and thus use orthogonal
placement (e.g., Dowsland, 1987a; Martins & Dell, 2008; Nelissen,
1993; Young-Gun & Maing-Kyu, 2001). There are also a small num-
ber of authors who consider additional constraints, such as
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clampability (e.g., Carpenter & Dowsland, 1985). Recently, Kocjan
and Holmstrom (2010) deals with specific loads of PLP, and
Bortfeldt and Wadscher (2013) reviews special constraints on
general container loading. The PLP also occurs in a number of
cutting stock and floor design scenarios (Martins & Dell, 2008).

The PLP is difficult to solve exactly within a short computation
time, and sample instances are often used to demonstrate an algo-
rithm'’s efficiency (Martins, 2003; Martins & Dell, 2007). Dowsland
(1984) first showed that PLP instances can be divided into
equivalence classes with the same optimal placement pattern.
Such authors as Dowsland (1984, 1987a, 1987b), Scheithauer and
Terno (1996), Nelissen (1993), Morabito and Morales (1998), and
Pureza and Morabito (2006) used PLP instances of equivalent clas-
ses numbering from approximately 10,000 to approximately
50,000. Restrictions on the aspect ratio of the pallet and the items
are commonly applied to confine the number of instances investi-
gated. Alvarez-Valdes et al. (2005), Birgin, Morabito, and Nishihara
(2005), and Lins, Lins, and Morabito (2003) investigated a common
set of approximately 50,000 instances.

Martins and Dell (2007) first proposed the idea of identifying a
PLP equivalence class by the Minimum Size Instance (MSI). The
input of a PLP instance contains four parameters: the length and
width of the pallet and the length and width of the boxes. An
MSI of an equivalent class is the equivalent instance that has all
four parameters minimised. Martins and Dell (2007) proved that
the existence and uniqueness of an MSI for a PLP equivalence class
is guaranteed. These researchers also found the parameter bounds
of the MSI when the PLP’s area ratio (the ratio of pallet area to item
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area) is bounded. Thus, an enumerating procedure can be designed
to generate all equivalence classes of a PLP subject to a given area
ratio bound.

According to Martins and Dell (2007), the motivation for
determining the MSI is to identify equivalent classes by unique
instances and to provide a systematic way of exhaustively enumer-
ating PLP equivalent classes subject to a given boundary (such as the
area ratio bound). It should be noted that Dowsland (1984) also
demonstrates a method for enumerating PLP equivalent classes
subject to given bounding conditions, and Dowsland (1987a) also
mentions minimising the smaller dimension of the box such that
the solution space is smaller and easier to solve. However,
Martin and Dell’s work clarifies the concept of MSI and provides a
systematic way to use it.

Exhaustively enumerating PLP equivalence classes also provides
an exact solution scheme that reuses MSI solutions. Because most
PLP equivalent classes are easily solvable, the hard classes may be
tackled at the cost of a long run time or expensive hardware.
However, once the classes are solved, the solutions, represented
by the solutions of MSIs, can be stored in a database for future
reference. Both Dowsland (1987b) and Martins and Dell (2008)
suggest using this scheme for completely solving the PLP subject
to a given area ratio bound.

The MSI enumeration algorithms presented by Martins and Dell
(2007) are of a high-order polynomial. Enumerating all MSIs of
area ratio N < 101 requires the maximum bearable computing load
on a 600-Megahertz computer (with a 2.8-Gigahertz computer,
N <151 is bearable).

The input sizes of sample instances for demonstrating PLP algo-
rithms continue to grow over time. The Cover I dataset has an area
ratio of N<51 and was used by the earliest authors (Dowsland,
1984, 1987a). Later, a dataset with N <101 (the Cover Il dataset)
was used by most authors until 2010. In 2010, Birgin et al.
(2010) used a Cover III dataset with N<151. To the best of the
author’s knowledge, N <151 is currently the largest input size
being used in PLP datasets.

Although the Cover I, II, and Il datasets are valuable for devel-
oping algorithms, they are far from representing the requirements
of real applications. For example, the practical wood pulp stowage
problem (Birgin et al., 2010) involves area ratios ranging from 147
to 341. The area ratio of the PLP in container loading may reach
values in the several thousands (Young-Gun & Maing-Kyu, 2001).

The L-shaped heuristic is a notably effective PLP algorithm and
is estimated to be exact (Birgin et al., 2005; Lins et al., 2003). This
algorithm has been tested by Cover I (N<51), Cover II (N<101),
and Cover Il (N<151) but has not been systemically tested by
equivalent classes with N > 151.

In this paper, the authors introduce a new way for identifying
the MSI. The new MSI-identifying algorithm’s computing com-
plexity is two polynomial orders lower than that of the algo-
rithm of Martins and Dell (2007). With a 2.8-Gigahertz
computer, the new algorithm enumerates all of the equivalence
classes with an area ratio N < 101 in approximately two minutes.
All equivalence classes with an area ratio N<201 and N <301
are enumerated. Additionally, the new algorithm is based on
an item aspect ratio interval (equivalence ratio interval), which
provides a new perspective on the nature of equivalence classes
and the MSI. The authors of this paper also note that the
concept of MSI and its identifying algorithm can be used to
transform a non-integer PLP into its equivalent integer MSI.
The new algorithm is simple to implement. When programmed
in C++, the total code length of the equivalence class enumerat-
ing algorithm is only 127 lines.

The following are suggested applications of the algorithm
described in this paper:

1. As a subroutine of the exact solution scheme that reuses MSI
solutions (proposed by Martins & Dell, 2008; Dowsland,
1987b), the MSI-identifying algorithm discussed herein, which
has O(N?) complexity, can be used to substitute the correspond-
ing Martins and Dell (2008) MSI-identifying algorithm, which
has O(N*) complexity.

2. The N<201 and the N <301 equivalent class datasets can be
used for algorithm testing or demonstration and can also be
used to expand the capacity of the exact solution scheme that
reuses MSI solutions.

3. The 127 C++ code lines, which are much easier to distribute and
execute much more rapidly, can be used to substitute for the
previous N <151 datasets, which are difficult to describe in
publication materials or share online. Of course, the code can
also serve as the source of the N<201 and N < 301 datasets.

4. For a dataset that has N > 301, because the number of instances
will grow to be excessively large, the authors suggest using the
127 C++ code lines plus additional constraints and/or selection
mechanisms, such as the uniform random selection, to generate
sample instances for the purpose of algorithm testing and
demonstration.

5. The MSI identification algorithm can be employed to convert
non-integer PLP instances from real applications to their equiv-
alent integer MSIs without losing any precision such that they
can be solved using up-to-date algorithms that involve integer
assumptions.

6. As pointed out by Dowsland (1985, 1987a), the MSI reduces the
problem to one with fewer potential placement positions, and
usually strengthens bounds such as that due to Barnes, thus
improving the efficiency of many exact approaches to the
problem. This can be done only when we have a high efficiency
MSI-identifying algorithm, especially when the area ratio of the
problem is large. Thus the O(N?) MSI-identifying algorithm pre-
sented in this paper is better than the previous O(N*) algorithm
for this purpose.

Presently, the O(N*) algorithm by Martins and Dell (2008) is the
only well described MSI-identifying algorithm. In Dowsland
(1987a), it is stated that using an idea similar to the aspect ratio
interval to minimise the smaller dimension of the box could reduce
the search space. However, the detailed procedure is not described.
In this paper we will present the O(N?) MSl-identifying algorithm
with theoretic details, the computational analysis, and the code
realisation along with a numerical test.

The rest of this paper will be organised as follows. In Sections
2.1 and 2.2, basic notation, assumptions, and commonly known
properties of the PLP are presented or reviewed. In Section 2.3,
the general scheme of the new method is concisely introduced.
Details of the new method are introduced in Sections 3-5. Section 6
addresses the implementation issue, where an integer realisation is
proposed to avoid the precision issue associated with float
computing. Section 7 provides numerical results, and Section 8
concludes the paper.

2. Notations, properties, and the general scheme
2.1. Notations and assumptions

In this paper, a PLP instance is represented by (X,Y,a,b). X and Y
are the pallet’s width and height; a and b are the item’s width and
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