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a b s t r a c t

This paper considers the Red–Blue Transportation Problem (Red–Blue TP), a generalization of the
transportation problem where supply nodes are partitioned into two sets and so-called exclusionary
constraints are imposed. We encountered a special case of this problem in a hospital context, where
patients need to be assigned to rooms. We establish the problem’s complexity, and we compare two
integer programming formulations. Furthermore, a maximization variant of Red–Blue TP is presented,
for which we propose a constant-factor approximation algorithm. We conclude with a computational
study on the performance of the integer programming formulations and the approximation algorithms,
by varying the problem size, the partitioning of the supply nodes, and the density of the problem.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider the well-known Transportation Problem (TP):
given is a set of supply nodes S, each with supply ai (i 2 S), a
set of demand nodes D, each with demand bj (j 2 D), withP

i2Sai ¼
P

j2Dbj, and a bipartite graph (S [ D; E), with a given cost
cij for each edge ði; jÞ 2 E, where E is not necessarily complete.
The question is how to send the flow from supply nodes to
the demand nodes such that total cost is minimal. In this paper,
we generalize this problem by associating a color, either red or
blue, to each supply node. Thus, the set of supply nodes is par-
titioned into two sets R (red) and B (blue) such that S ¼ R [ B,
and R \ B ¼ ;. The additional requirement is that the set of sup-
ply nodes that actually supply a demand node should all have
the same color. In other words, a demand node is only allowed
to receive flow from supply nodes that are either all red or all
blue. We refer to these constraints as color constraints.
Obviously, the resulting problem is a generalization of the trans-
portation problem since if all supply nodes have the same color,
the TP arises. We will refer to our problem as the Red–Blue
Transportation Problem (Red–Blue TP).

In Section 1.1 we discuss the practical application that moti-
vated our study, followed by related literature in Section 1.2.

1.1. Motivation

Although the Red–Blue TP may seem a purely theoretical gener-
alization of the transportation problem, its motivation stems from a
situation we encountered in practice. Consider a setting where
patients in a hospital need to be assigned to rooms. Rooms are of
limited capacity, and due to specific equipment, not all rooms are
equally appropriate for each patient. For instance, a patient’s pathol-
ogy may require oxygen to be available at the room; rooms that do
not meet this requirement, need to be equipped with a mobile oxy-
gen supply which is, for organizational reasons, less desirable. The
Patient Admission Scheduling problem (PAS) consists in assigning
patients to rooms in such a way that the medical concerns and per-
sonal wishes are fulfilled as much as possible. This problem has been
defined by Demeester, Souffriau, De Causmaecker, and Vanden
Berghe (2010), and studied further by Ceschia and Schaerf (2011).
A key constraint in the patient admission scheduling problem is that
male and female patients should not be assigned to the same room,
which is common practice in hospitals (all over the world). Clearly,
this situation can be modeled as a (special case of) Red–Blue TP:
each patient is represented as a supply node with ai ¼ 1, each room
is represented as a demand node where the capacity of the room is
represented by bj, and the ‘‘appropriateness’’ of assigning patient i to
room j is captured by cost cij.

It is not hard to think of other practical applications of Red–Blue
TP. For instance, imagine a situation where a number of goods need
to be transported from a port to a warehouse. Several trucks are
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available for transportation, each driving according to a schedule
that fixes the departure times at the port. Depending on delivery
deadlines, some truck assignments are more suitable for particular
goods than others. A Red–Blue TP instance arises if the goods can
be divided into two types that cannot be assigned to the same
truck, for instance because of incompatibilities of content (e.g.
hazardous materials), ownership (e.g. rivaling business companies
that are unwilling to have their goods transported on the same
truck), or size (Cao & Uebe, 1995). Another application involves
the transportation of football fans to the match using public rail-
ways: when assigning fans to trains, no fans of the opposing teams
should be on the same train, to avoid hooliganism (Schreuder,
1992). In Section 4, we mention further applications of a maximi-
zation variant of our problem.

1.2. Related literature

The Red–Blue transportation problem is a natural generalization
of a classic problem in operations research. In the literature, several
generalizations of the transportation problem have been described.
The most well-known is probably the transshipment problem, in
which the underlying graph need not be bipartite, and so-called
transferring nodes, which have no net supply or demand, may exist
(see e.g. Orden (1956)). The min-cost flow problem is a further gen-
eralization of the transshipment problem, introducing capacities on
the arcs. In the fixed-charge transportation problem (Hirsch &
Dantzig, 1968), a fixed cost may be incurred for every arc in the
transportation network that is used. Numerous other generaliza-
tions of the transportation problem have been presented, for
instance to solve spatial economic equilibrium problems (MacKin-
non, 1975), and aircraft routing problems (Ferguson & Dantzig,
1955), or even to deal with wartime conditions where distances
from some sources to some destinations are no longer definite
(i.e. the gray transportation problem, see Bai, Mao, & Lu (2004)).

One generalized transportation problem is particularly related
to the Red–Blue transportation problem, namely the Transporta-
tion Problem with Exclusionary Side Constraints (TPESC). Although
the name TPESC was coined by Sun (2002), it was in fact intro-
duced by Cao (1992). The phenomenon that not every set of supply
nodes is allowed to send flow to a demand node, is something that
TPESC and Red–Blue TP have in common. In TPESC, for each de-
mand node j 2 D, a set of pairs of supply nodes is given, denoted
by Fj ¼ ffi1; i2gji1; i2 2 Sg. The problem is to send the flow from
supply to demand nodes at minimum cost, such that each demand
node j 2 D only receives supply from at most one supply node for
each pair of supply nodes present in Fj.

It is not hard to see that Red–Blue TP is a special case of TPESC.
Goossens and Spieksma (2009) show that TPESC is NP-hard, and
becomes pseudo-polynomially solvable if the number of supply
nodes is fixed. Furthermore, these authors study TPESC with
identical exclusionary sets: they provide a pseudo-polynomial
algorithm for the case with two demand nodes, and prove
NP-hardness for the case with three demand nodes.

Another problem related to Red–Blue TP is the so-called
Maximum Flow problem with Conflict Graph (MFCG), a problem
studied by Pferschy and Schauer (2013). In the MFCG a directed
graph with capacitated arcs, a source, and a sink are given. In
addition, pairs of arcs (from the directed graph) are given; for some
pairs of arcs the constraint is that at most one arc of the pair can
carry flow (a negative disjunctive constraint), for other pairs of arcs
the constraint is that at least one arc of the pair must carry flow (a
positive disjunctive constraint). Pferschy and Schauer (2013) show
that the problem of finding a maximum flow in a network under
these disjunctive constraints is (strongly) NP-hard; even more they
show that no polynomial time constant-factor approximation
algorithm can exist (unless P = NP).

Observe that Red–Blue TP is a special case of MFCG; indeed, con-
sider some demand j 2 D. Now, by having negative disjunctive con-
straints for each pair of arcs that consist of one arc emanating from
a red supply node to node j, and one arc emanating from a blue
supply node to node j, an instance of Red–Blue TP arises. We point
out that for our special case it is possible to find polynomial time
constant factor approximation algorithms (see Section 4).

2. Complexity of Red–Blue TP

As a general statement of the complexity of Red–Blue TP, we
provide the following theorem.

Theorem 1. Red–Blue TP is NP-hard, even if ai ¼ 1 8i 2 S, and
bj ¼ 3 8j 2 D.

Proof. We prove Theorem 1 by showing that the EXACT-3-COVER
(X3C) problem can be reduced to the decision version of Red–Blue
TP. The decision version of Red–Blue TP, denoted Red–Blue TPD,
concerns the question: does there exist a solution that sends all
flow from the supply nodes to the demand nodes while satisfying
demand, and while satisfying the color constraints, i.e. does there
exist a feasible flow? X3C has been shown to be NP-complete
(see e.g., Garey & Johnson, 1979), and is defined as follows:

Input: A set X with jXj ¼ 3q and a collection C of 3-element sub-
sets (i.e., triples) of X, with jCj ¼ k.
Question: Does there exist a cover in C that covers X exactly, i.e.
a subcollection C0# C such that every xi 2 X is contained in
exactly one Cj 2 C0?

Any instance of X3C (with jCj > q) can be reduced to Red–Blue
TPD as follows. Associate to each element xi 2 X a blue supply node
i with ai ¼ 1. Associate to each triple Cj a demand node j with
bj ¼ 3. Create edges from supply to demand nodes corresponding
to the membership relations (i.e. supply node xi is connected to
demand node Cj () xi 2 Cj). Add 3ðk� qÞ red supply nodes with
ai ¼ 1 that are connected to all demand nodes. Observe that total
supply equals total demand. The question is: does there exist a
feasible flow in this instance of Red–Blue TPD?

Now we show that a yes-answer to the X3C instance directly
corresponds to a yes-answer to the corresponding Red–Blue TP
instance, and vice versa.

First, consider an X3C instance that is feasible, and thus has an
exact cover C0# C. Then, each demand node corresponding to a
Cj 2 C0 can be supplied by the blue supply nodes corresponding to
the xi 2 Cj, and the remaining demand nodes can be supplied by
the red supply nodes. Thus, the corresponding Red–Blue TPD

instance is also feasible.
Next, consider any feasible solution to the Red–Blue TPD

instance. Each demand node is supplied by either three red supply
nodes or by three blue supply nodes. Moreover, there must exist q
demand nodes each supplied by three blue supply nodes. These
triples of blue supply nodes correspond to the triples in X3C that
form a feasible solution. h

Notice that the above reduction can be generalized to show that
Red–Blue TP with bj ¼ k is at least as hard as Exact Cover by k-sets.

If we put a cost of zero on the edges described in the above
proof, and add some edges with a cost strictly larger than zero
(corresponding to xi R Cj), a polynomial-time algorithm with a
constant performance ratio for Red–Blue TP would find a zero cost
solution if one exists, and hence would be able to distinguish
between the yes-instances and the no-instances of X3C. Therefore,
the following corollary holds:
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