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a b s t r a c t

Agents are connected each other through a tree. Each link of the tree has an associated cost and the total
cost of the tree must be divided among the agents. In this paper we assume that agents are asymmetric
(think on countries that use aqueducts to bring water from the rainy regions to the dry regions, for exam-
ple). We suppose that each agent is entitled with a production and demand of a good that can be sent
through the tree. This heterogeneity implies that the links are not equally important for all the agents.
In this work we propose, and characterize axiomatically, two rules for sharing the cost of the tree when
asymmetries apply.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The study on the structure of service networks (such as power
grids, gas pipelines, telecommunications or transportation infra-
structures) has become more and more important. Those networks
are costly (some times that cost is the amount to pay for its con-
struction, and some other times it refers to the needed money
for its maintenance). Quite often the structure of the network is
a tree, because it allows to have all agents connected in the cheap-
est way. The problem of allocation the cost of a network, and par-
ticularly of a tree, has been widely studied in the literature.

Let us consider the simplest problem we may define, that is, two
agents with a link connecting them. To divide the cost of the link
equally between the two extremes, is a quite reasonable outcome
when there is no more information and agents are assumed to be
homogeneous. However, there are many cases where that homoge-
neity does not apply, and the link is much more important for one
of the agents than for the other. The electrical interconnection be-
tween France and Spain is a quite illustrative example of this situ-
ation. These two countries decided to communicate their national
power grid with a link crossing the Pyrenees. The cost of this con-
nection has to be split between both countries, taking into account
that Spain will obtain more beneficial than France from the con-
struction of the link. This is because France produces enough elec-
tricity to cover, in case of failure in Spain, both its own demand and
the Spanish one. The question then arises: How should the cost of

the new connection be distributed between France and Spain
considering all the elements? Similar questions emerge in the con-
struction of the gas pipelines between Europe and Africa or Russia
and Germany. Another situation that reflects this asymmetry is the
network of aqueducts and pipelines that bring water from the
rainy regions to the arid areas. The first ones use to have enough
water to cover its demand and to even send the surplus to where
it is needed, whereas the arid regions hardly have enough resource
to fulfilled its own demand. Until which point is fair to oblige to the
rainy areas to contribute to the cost of the pipelines? This paper
deals with these situations, where the agents in the tree are asym-
metric. This asymmetry will be induced by different demand and
production for different agents.

In its general formulation, we consider a set of agents, each of
them able to produce and demand a service like water. All agents
are connected to each other forming a tree. Through this tree
agents can send and receive water (or any other good). Hence, if
the production of one agent fails, its demand can still be satisfied
by obtaining the water from another agent. This can be obviously
done only if the production of the other agent is high enough to
compensate the failure. We assume that the tree is given and that
each link of the tree has an associated cost that should be paid by
the agents. This cost could be interpreted as a construction cost,
maintenance cost (the tree already exists there but there are recur-
ring maintenance costs, otherwise cannot be operative) or usage
cost (the tree is there but we must pay a cost for using it). To
sum up, a problem has five elements: a set of agents, a tree that de-
scribes the communication structure, a cost function that sets the
cost of each link, a vector of demands (one demand for each agent),
and a vector of productions (one production for each agent). A rule
is a mechanism to distribute the cost of the tree among the agents.
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Our paper belongs to literature on the axiomatic analysis of cost
allocation rules. Some papers of this literature focus on general
problems like Moulin and Shenker (1992), Sprumont (1998), and
Tijs and Driessen (1986). Other papers study some particular situ-
ations associated with networks, like Estevez-Fernandez (2012),
Moulin and Laigret (2011), Norde, Fragnelli, Garcia-Jurado, Patrone,
and Tijs (2002). Other papers focus on situations associated with a
tree, like Bird (1976), Bogomolnaia, Holzman, and Moulin (2010),
Littlechild and Owen (1973), and Ni and Wang (2007).

The particular case of trees has been a focal point (mostly be-
cause it is the most efficient way to communicate all the agents,
regardless other aspects like flows and capacities). In the so-called
minimum cost spanning problem several agents (nodes) need a
good (water, for example) which can only be provided by a special
node called the source (a water tank, for example). Thus, agents
have to be connected to the source. Bird (1976), probably the
seminal paper on this field, studies how to share the cost of a gi-
ven tree among its nodes. Several papers came after in this field,
proposing new solutions and analyzing the properties such solu-
tions may satisfy. We can mention, for instance, the papers of
Kar (2002), Dutta and Kar (2004), Tijs, Branzei, Moretti, and Norde
(2006), Bergantiños and Vidal-Puga (2007, 2010), Bergantiños and
Lorenzo-Freire (2008), Bogomolnaia and Moulin (2010), Berg-
antiños, Lorenzo, and Lorenzo-Freire (2011), Hougaard and Tvede
(2012) and Trudeau (2012). In a parallel way other papers propose
rules in problems arising from extensions of the minimum cost
spanning tree problem. For instance, Fernandez, Hinojosa, and
Puerto (2004) study multicriteria cost spanning tree games; Berg-
antiños and Gómez-Rúa (2010) study situations where agents are
grouped; Dutta and Mishra (2012) study situations where costs
are asymmetric; and Bergantiños, Gómez-Rúa, Llorca, Pulido,
and Sánchez-Soriano (2012, 2014) study situations where the
computation of the optimal tree is NP hard. In this paper we con-
sider situations where each node can provide the service. Thus
each node has a demand and a capacity production. As far as
we are aware no other work has studied the problem presented
in this paper. A real example captured by our model, but not by
the previous ones, is the transfer of water from Tagus river to
Segura river in Spain.

Our paper belongs to literature on the axiomatic analysis of cost
allocation rules in networks. See Sharkey (1995) and Thomson
(2001) for two surveys of this literature. In the axiomatic method,
rules are justified in terms of the axioms they fulfill. In general,
suitable combinations of desirable axioms are used to differentiate
among rules. Thus, we introduce a collection of axioms that are
adequate for the framework we study.

The first group of axioms are: Fairness for two agents says that,
when there are only two agents and one link between them, the
cost of the connection is paid by the agent that gets profit from
its existence. Symmetry states that symmetric agents should pay
the same. Independence reallocation requires that if the cost of con-
necting two individuals is zero, both cannot benefit from reallocat-
ing productions and demands between themselves. Network-cost
independence of extra costs refers to how to allocate punctual incre-
ments of the cost of a single link. Our first result identifies the rule
that satisfies these four axioms. We call it the equal division across
components rule, which works as follows. For each link l, if we re-
move l from the tree we have two connected components. The cost
of l is divided among the components following the idea of fairness
for two agents, but applied to each component. We compute the
aggregate production and demand of both components. If the link
is profitable for only one component, then this component pays the
cost. If the link is profitable for both or nobody, then each compo-
nent pays half of the cost. Once this is done, the payment of each
component is equally allocated among the agents belonging to it.
We apply the same reasoning to all the links of the tree and the

contribution of an agent is the sum of his contributions in the re-
moval of all links.

The second group of axioms we propose is the following. Cost
additivity simply says that the rule is additive with respect to the
cost function. Stand alone core states that the rule must select allo-
cation within the core (whenever the core is not empty). An agent
is safe in a tree when, in case of failure of his production, the other
agents can fulfill its demand. After the removal of a link in the tree,
the safe status of an agent may change. Balanced contributions with
respect to the safe status requires that if the cost of a link increases,
all agents with the same status with respect to such a link should
be affected in the same way. In our second result we characterize
the rule that fulfills the three previous properties. We call it the
equal safety rule. This rule also specifies how to divide the cost of
each single link. Now, the cost of a link is equally split among all
the agents for whom such a link is necessary for their safety. If
some link is not necessary for any agent then, the cost of the link
is equally divided among all the agents. Again, the contribution
of an agent is the sum of his contributions to all links of the tree.

We apply both rules to the design of a tariff system for the
water transferred from Tagus river to Segura river in Spain. Even
both rules are different, in this particular case coincide.

The rest of the paper is structured as follows. In Section 2 we
present the model and the elements of the problem. In Section 3
we introduce the axioms we use in the rest of the paper. Sections
4 and 5 are devoted to the characterizations we aforementioned.
Finally, Section 6 concludes.

2. Model

Let U ¼ 1;2;3; . . .f g be the (infinite) set of possible agents and
N � U. Usually we take N ¼ f1;2; . . . ;ng where n ¼ Nj j. A network
g is a collection of unordered pairs in N, i.e., g ¼ ffi; jg : fi; jg � Ng.
When there is no room for confusion we denote the elements of g
simply as ij instead of fi; jg. The agents i 2 N involved in the net-
work are called nodes, while the pairs ij are called links. Given a
network g, the set of links and nodes of g are denoted by LðgÞ
and NðgÞ respectively. Given S � N; gS denotes the restriction of g
to S, namely gS ¼ ij 2 g : ij � Sf g. Given a network g and a link
ij 2 g; g n ij denotes the network resulting from dropping the link
ij from g.

A path in g between i and j is a sequence of links in g that starts
in node i and finishes in node j, i.e., it is a string k1k2; . . . ; kh�1kh

such that kq – kr for all q; r 2 1; . . . ;hf g; kq�1kq 2 g for all
q 2 f2; . . . ;hg, i ¼ k1, and j ¼ kh. We say that i and j are connected
in g if there exists a path in g between i and j. We say that S � N is a
connected component in g if any pair of agents in S are connected
whereas no agent in S is connected with an agent in N n S. Let N=g
denote the partition of N in connected components. Given i 2 N, we
denote by Ag

i the connected component of N=g to which i belongs
to.

A cycle in g is a path in g between i and i different from ii. A for-
est is a network without cycles. A tree is a forest in which each pair
of nodes are connected.

If g is a forest then N=g could have several elements. If g is a tree
then N=g ¼ Nf g. Given a tree t and ij 2 t;N= t n ijð Þ has two con-
nected components. We denote by Aij

i respectively Aij
j

� �
the com-

ponent to which i respectively jð Þ belongs to.
A cost function is a mapping c : N � N ! Rþ where c ijð Þ is the

cost associated to link ij.
We assume that the cost of connecting agent i with itself is null,

cðiiÞ ¼ 0 for each i 2 N; and connecting i with j is as costly as con-
necting j with i, this is, cðijÞ ¼ cðjiÞ for each fi; jg# N. For each net-
work t, abusing the notation we denote by cðtÞ the cost of all links
in t; cðtÞ ¼

P
l2tcðlÞ.
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