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a b s t r a c t

In this paper we present the Selective Graph Coloring Problem, a generalization of the standard graph col-
oring problem as well as several of its possible applications. Given a graph with a partition of its vertex
set into several clusters, we want to select one vertex per cluster such that the chromatic number of the
subgraph induced by the selected vertices is minimum. This problem appeared in the literature under dif-
ferent names for specific models and its complexity has recently been studied for different classes of
graphs. Here, we describe different models – some already discussed in previous papers and some
new ones – in very different contexts under a unified framework based on this graph problem. We point
out similarities between these models, offering a new approach to solve them, and show some generic
situations where the selective graph coloring problem may be used. We focus on specific graph classes
motivated by each model, and we briefly discuss the complexity of the selective graph coloring problem
in each one of these graph classes and point out interesting future research directions.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Definitions and motivation

Graph coloring is one of the most studied optimization prob-
lems in graph theory. Given a simple graph, it consists in assigning
one color to each vertex such that two vertices linked by an edge
get different colors and the total number of colors used is
minimized. It is widely used to model several types of real applica-
tions such as scheduling, timetabling, frequency allocation,
wavelength routing and many more (see for instance Dandashi &
Al-Mouhamed, 2010; Gamache, Hertz, & Ouellet, 2007; Giaro,
Kubale, & Obszarski, 2009; Qu, Burke, & McCollum, 2009;
Talaván & Yáñez, 2008). Several generalizations of the classical
graph coloring problem are also considered in the literature to
cover an even wider range of applications with various constraints
(see for instance Demange, Ekim, & de Werra, 2009; Sotskov,
Dolgui, & Werner, 2001). In this paper, we motivate a further gen-
eralization of the usual graph coloring problem which introduces
more flexibility to the applications by offering the possibility of
choosing among several predefined strategies.

In this paper, all graphs G ¼ ðV ; EÞ are undirected and simple. A
stable set is a set of vertices that are pairwise non-adjacent and a
clique is a set of vertices that are pairwise adjacent. We denote
by aðGÞ and xðGÞ the size of a maximum stable set and the size
of a maximum clique in G, respectively. The complementary graph
�G ¼ ðV ; �EÞ of G ¼ ðV ; EÞ is defined by uv 2 �E() u – v and uv R E.
An induced path on k vertices is denoted by Pk. The graph obtained
by taking k disjoint copies of G (with no edges between any two
copies) is referred to as kG. For V 0 # V ;G½V 0� denotes the subgraph
induced by V 0 in G.

A k-coloring of G is a mapping c : V ! f1; . . . ; kg (cðuÞ is called
the color of vertex u) such that cðuÞ – cðvÞ for all uv 2 E (each color
class defined by the set of vertices with a same color forms a stable
set). The smallest integer k such that G admits a k-coloring is called
the chromatic number of G and is denoted by vðGÞ. Given a graph G,
the problem of deciding whether G is k-colorable or not is called
k-COLORABILITY. Consider now a partition V ¼ ðV1;V2; . . . ;VpÞ of the
vertex set V of G. The sets V1; . . . ;Vp are called clusters and V is
called a clustering. A selection is a subset of vertices V 0 # V such that
jV 0 \ Vij ¼ 1 for all i 2 f1; . . . ; pg. A selective k-coloring of G, also
called partition coloring in the literature, with respect to V is
defined by ðV 0; cÞ where V 0 is a selection and c is a k-coloring of
G½V 0�. We may define the following two problems:
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SEL-COL

Input: An undirected graph G ¼ ðV ; EÞ and a clustering
V ¼ ðV1; . . . ;VpÞ of V.

Output: A selection V� such that vðG½V��Þ is minimum.
Let k P 1 be a fixed integer.
k-DSEL-COL

Input: An undirected graph G ¼ ðV ; EÞ and a clustering
V ¼ ðV1; . . . ;VpÞ of V.

Question: Does there exist a selection V 0 such that
vðG½V 0�Þ 6 k?

The smallest integer k for which a graph G admits a selective
k-coloring with respect to V is called the selective chromatic number
of G and is denoted by vSELðG;VÞ. It is obvious to see that
vSELðG;VÞ 6 vðGÞ for every clustering V of V. For both problems
above, adding or/and deleting edges between vertices of a same
cluster does not affect the solution. However, when considering
specific classes of graphs, adding or deleting edges in a cluster
may not be allowed if the graph class we are considering is not
stable under such graph operations. In this case, it is sometimes
interesting to consider instances for which all clusters are cliques.
We call this case compact clustering (Demange, Monnot, Petrica, &
Ries, 2013).

The selective graph coloring problem has been considered by
several authors. Some complexity results for restrictive classes of
graphs can be found in (Demange et al., 2013; Erlebach & Jansen,
2001). In (Guangzhi & Simha, 2000), some constructive heuristics
are proposed whereas a tabu search algorithm for SEL-COL is devel-
oped in (Noronha & Ribeiro, 2006). Concerning exact algorithms, a
branch-and-cut algorithm and a branch-and-price algorithm are
given along with computational results in respectively (Frota,
Maculan, Noronha, & Ribeiro, 2010; Hoshino, Frota, & de Souza,
2011). More graph theoretical results concerning the selective
graph coloring problem can be found in (Bonomo, Cornaz, Ekim,
& Ries, 2013).

To the best of our knowledge (Guangzhi & Simha, 2000;
Noronha & Ribeiro, 2006) are the only papers where the selective
graph coloring problem is explicitly mentioned to model a real life
problem which is called routing and wavelength assignment. How-
ever, we notice that the selective graph coloring problem has a
huge potential to extend the use of the standard coloring problem
to many other real life applications. The aim of this paper is to
emphasize how several real life problems can be modeled using
the selective graph coloring model whereas the usual graph
coloring model would not be able to handle them. Section 2
presents examples such as routing and wavelength assignment,
dichotomy-based constraint encoding, frequency assignment,
timetabling, quality test scheduling, berth allocation and multiple
stuck TSP. Each model motivates the study of SEL-COL in some
specific class of graphs and rises in particular questions about com-
plexity. These questions are studied in (Demange et al., 2014) and
in this paper we will only mention the results without the proofs.
We first start with a few remarks about the complexity of the
selective graph coloring problem.

1.2. Some remarks on the complexity of the selective graph coloring
problem

As mentioned above, a solution for SEL-COL consists in a selection
V� such that vðG½V��Þ is minimum. However, the value associated
with V�, namely vðG½V��Þ, may be hard to determine even if V� is
known. In other words, when we can compute efficiently an opti-
mal solution for SEL-COL for an instance ðG;VÞ, this does not neces-
sarily imply that its value vSELðG;VÞ can be computed in polynomial

time. More precisely, it is still NP-hard to compute the selective
chromatic number in general even when an optimal selection V�

is known. For this reason, we will sometimes distinguish between
the hardness of SEL-COL (selection process) and the hardness of
deciding whether a given selection induces a k-colorable graph.

The following examples of reductions point out this difference.
First note that, for any k P 1; k-DSEL-COL is in NP in general graphs.
Indeed, given an instance ðG;VÞ with a set V 0 # V and a coloring of
G½V 0�, in order to test whether vðG½V 0�ÞÞ 6 k, it is enough to verify
whether V 0 meets each cluster exactly once and the color assign-
ment defines a k-coloring of the graph G½V 0�. This can clearly be
done in polynomial time. Furthermore, 3-DSEL-COL generalizes the
usual 3-coloring problem (i.e, given a graph G ¼ ðV ; EÞ, we want
to know if G admits a coloring of V using at most 3 colors) for which
each vertex is a cluster on its own, and hence it is NP-complete.
However determining an optimal selection is easy since there is
only one solution: all vertices must be selected since each vertex
represents a cluster.

Showing the NP-hardness of SEL-COL requires another reduction.
Consider an instance G ¼ ðV ; EÞ of 3-COLORABILITY. Let G0 ¼ ðV 0; E0Þ be a
graph composed of 3 independent copies of G and define the fol-
lowing clustering V of V 0: each cluster contains exactly the 3 copies
of a same vertex in G. Then, G is 3-colorable if and only if an (opti-
mal) selection for the instance ðG0;VÞ is a stable set (i.e.,
vSELðG

0;VÞ ¼ 1). Indeed, if there is a selection which is a stable
set, then a 3-coloring of G can be found by coloring a vertex with
color i 2 f1;2;3g if its ith copy in G0 has been selected. Conversely,
a 3-coloring of G allows to find a selection which is a stable set by
choosing the ith copy of a vertex in G0 if it is colored with color
i 2 f1;2;3g. Note that deciding whether a given selection is
1-colorable is trivially polynomial.

The two reductions above show that 3-DSEL-COL is NP-complete
even with clusters of size 1 while 1-DSEL-COL (resp. SEL-COL) is NP-
complete (resp. NP-hard) even if clusters are of size 3. However, in
the first case the selection is trivial but evaluating the corresponding
selective chromatic number is hard while in the second case finding
the required selection is hard but it is trivial to decide whether the
chromatic number of the graph induced by any selection is 1. More
generally, any hardness result for k-DSEL-COL, with k 6 2, or for SEL-COL

in graph classes for which graph coloring is polynomial, points out the
hardness of the selection process. Note that in many cases both steps
– finding a selection and evaluating its value – can be hard.

Finally, note that the last reduction above can be adapted to
show that SEL-COL even generalizes the k-List-coloring problem.
Here, with every vertex v of the instance graph G ¼ ðV ; EÞ, we asso-
ciate a list LðvÞ# f1; . . . ; kg of allowed colors and the problem con-
sists in deciding whether there is a k-coloring of G such that each
vertex gets a color from its list. We construct a graph G0 ¼ ðV 0; E0Þ
as follows. For every vertex v 2 V and every color c 2 LðvÞ we
define a vertex ðv ; cÞ of G0. We then link ðv ; cÞ and ðv 0; c0Þ if c ¼ c0

and v ;v 0 are linked in G. The clustering V of V 0 is obtained by putt-
ing all vertices ðv ; cÞ; c 2 LðvÞ in a same cluster. Clearly, G admits a
k-list coloring if and only if vSELðG

0;VÞ ¼ 1.

2. Some models and related classes of graphs

In this section, we present five different types of applications
each of which motivates SEL-COL in a particular class of graphs.
For each of these classes, we mention the related computational
complexity for solving the problem.

2.1. Routing and wavelength assignment

Optical networks appear in a large number of applications
including among others high performance computing and
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