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a b s t r a c t

In this paper, we consider a generic inexact subgradient algorithm to solve a nondifferentiable quasi-
convex constrained optimization problem. The inexactness stems from computation errors and noise,
which come from practical considerations and applications. Assuming that the computational errors
and noise are deterministic and bounded, we study the effect of the inexactness on the subgradient
method when the constraint set is compact or the objective function has a set of generalized weak sharp
minima. In both cases, using the constant and diminishing stepsize rules, we describe convergence
results in both objective values and iterates, and finite convergence to approximate optimality. We also
investigate efficiency estimates of iterates and apply the inexact subgradient algorithm to solve the
Cobb–Douglas production efficiency problem. The numerical results verify our theoretical analysis and
show the high efficiency of our proposed algorithm, especially for the large-scale problems.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Subgradient methods are popular and practical techniques used
to minimize a nondifferentiable convex function. Subgradient
methods originated with the works of Polyak (1967) and
Ermoliev (1966) and were further developed by Shor, Kiwiel, and
Ruszczyński (1985). In the last 40 years, many properties of sub-
gradient methods have been discovered, generalizations and
extensions have been proposed, and various applications have
been found (see Auslender & Teboulle, 2004; Bertsekas, Nedić, &
Ozdaglar, 2003; Hiriart-Urruty & Lemaréchal, 1996; Larsson,
Patriksson, & Strömberg, 1996; Nedić & Bertsekas, 2001;
Nesterov, 2009; Patriksson, 2008; Shor et al., 1985 and references
therein). Nowadays, the subgradient method still remains an
important tool for nonsmooth and stochastic optimization prob-
lems, special for large-scale problems, due to its simple formula-
tion and low storage requirement.

Motivated by practical reasons, approximate subgradient meth-
ods (also called �-subgradient methods) are widely studied in
Auslender and Teboulle (2004), D’Antonio and Frangioni (2009),
Kiwiel (2004), Larsson, Patriksson, and Strömberg (2003), Shor
et al. (1985). Kiwiel (2004) proposed a unified convergence frame-
work for approximate subgradient methods. The author presented

convergence in objective values and convergence to a neighbor-
hood of the optimal solution set, using both the diminishing and
nonvanishing stepsize rules. Larsson et al. (2003) proposed and
analyzed conditional �-subgradient methods to solve convex opti-
mization problems and convex–concave saddle-point problems.
Improving conditional subgradient methods, D’Antonio and
Frangioni (2009) combined the deflection and the conditional sub-
gradient technique into one iterative process, and investigated the
unified convergence analysis for the deflected conditional approx-
imate subgradient methods, using both the Polyak-type and dimin-
ishing stepsize rules. Furthermore, Auslender and Teboulle (2004)
proposed and developed an interior �-subgradient method for con-
vex constrained optimization problems over polyhedral sets, in
particular Rn

þ, via replacing the Euclidean distance function by a
logarithmic-quadratic distance-like function.

Recently, Nedić and Bertsekas (2010) investigated the effect of
noise on subgradient methods for convex optimization problems.
Their work was motivated by the distributed optimization in net-
works where the data is quantized before being transmitted
between nodes (see Kashyap, Basar, & Srikant, 2007; Rabbat &
Nowak, 2005 and references therein). When the constraint set is
compact or the objective function has a set of weak sharp minima,
the authors established convergence properties to the optimal
value within some tolerance, which is expressed in terms of errors
and noise, under the bounded subgradient assumption.

Quasi-convex optimization problems can be found in important
applications in various areas, such as economics, engineering,
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management science and various applied sciences (see Avriel,
Diewert, Schaible, & Zang, 1988; Crouzeix, Martinez-Legaz, &
Volle, 1998; Hadjisavvas, Komlósi, & Schaible, 2005 and references
therein). The study of using subgradient methods to solve quasi-
convex optimization problems has been limited. Using the dimin-
ishing stepsize rule, Kiwiel (2001) studied convergence properties
and efficiency estimates of the exact subgradient method for solv-
ing a quasi-convex optimization problem under the assumption
that the objective function is upper semi-continuous. On the other
hand, modified dual subgradient algorithms were investigated in
Gasimov (2002) and Burachik, Gasimov, Ismayilova, and Kaya
(2006) for solving a general nonconvex optimization problem with
equality constraints by virtue of a sharp augmented Lagrangian.

Motivated by practical and theoretical reasons, in this paper, we
focus on an inexact subgradient algorithm for solving the following
quasi-convex optimization problem:

min f ðxÞ
s:t: x 2 X;

ð1:1Þ

where f : Rn ! R is a quasi-convex function and the constraint set
X is nonempty, closed and convex. We denote the optimal solution
set and the optimal value respectively by X� and f�, and we assume
that X� is nonempty and compact.

Inspired by the idea in Nedić and Bertsekas (2010) and refer-
ences therein, we investigate the influence of inexact terms,
including both computation errors and noise, on the inexact sub-
gradient algorithm. The computation errors, which give rise to
the �-subgradient, is inevitable in computing process. On the other
hand, the noise may come from practical considerations and appli-
cations, and is manifested in inexact computation of subgradients.
Considering a generic inexact subgradient algorithm for the
quasi-convex optimization problem (1.1) and assuming that the
computational errors and noise are deterministic and bounded,
we establish convergence properties in both objective values and
iterates within some tolerance given explicitly in terms of errors
and noise. We also describe the finite convergence behavior to
approximate optimality and efficiency estimates of iterates.

The quasi-convex function is more difficult to deal with, as the
epigraph of a convex function is convex; while only the sublevel
set of a quasi-convex function is convex. Lacking the convexity
assumed in Nedić and Bertsekas (2010), the main technical chal-
lenges are defining a suitable subdifferential of a quasi-convex
function, establishing the proper basic inequality, which is a key
tool needed in this area of study, and applying the convexity of
the sublevel set instead of that of the epigraph of a convex func-
tion, when analyzing the inexact subgradient method algorithm
for the quasi-convex optimization problem. To meet these
challenges, we adopt the closure of Greenberg–Pierskalla subdif-
ferential as the quasi-convex subdifferential, introduce the Hölder
condition to relate the quasi-convex subgradient with objective
function values and establish the basic inequality, which is only
a local property though, and then obtain the convergence property
in objective values and finite convergence under the Hölder condi-
tion, instead of the upper semi-continuity of the objective function
used in Kiwiel (2001). Another contribution is to describe the con-
vergence property in iterates, which are absent in Nedić and
Bertsekas (2010), by virtue of convexity of a sublevel set. When X
is noncompact, we need to assume an additional generalized weak
sharp minima condition. This condition extends the concept of
weak sharp minima in Nedić and Bertsekas (2010) and is presented
by using distðx;X�Þ, the distance of the decision variable x to X�.

We also investigate the quantification of the influence of errors
and noise by using both the constant and diminishing stepsize
rules, while only the diminishing stepsize rule is considered in
studying convergence properties and efficiency estimates of an
exact subgradient method in Kiwiel (2001).

We further consider the fractional programming as an applica-
tion of the quasi-convex model, describe the Cobb–Douglas pro-
duction efficiency problem as an example, and perform some
numerical experiments on this problem via applying the inexact
subgradient method. The numerical results verify our theoretical
analysis and show that the quasi-subgradient type method is
highly efficient for the production efficiency problem, even when
the problem is large-scale.

This paper is organized as follows. In Section 2, we present the
notations used in this paper, the quasi-subdifferential theory and
the inexact subgradient algorithm. In Section 3, we establish con-
vergence properties in both objective values and iterates, and finite
convergence behavior of our algorithm when the constraint set X is
compact. Section 4 presents the convergence behavior when f has a
set of generalized weak sharp minima over noncompact X, and
Section 5 gives the efficiency estimates. Finally in Section 6, we
apply our algorithm to the Cobb–Douglas production efficiency
problem, and demonstrate the numerical results.

2. Preliminaries

2.1. Notation and terminology

We consider the n-dimensional Euclidean space Rn. We view
vector as a column vector, and denote by hx; yi the inner product
of two vectors x; y 2 Rn. We use kxk to denote the standard
Euclidean norm, kxk ¼

ffiffiffiffiffiffiffiffiffiffiffi
hx; xi

p
. For x 2 Rn and d 2 Rþ; Bðx; dÞ

denotes the closed ball of radius d centered at x and specially B
denotes the unit closed ball at the origin. For a set Z # Rn, we
denote the closure of Z by clZ. We also write distðx; ZÞ to denote
the Euclidean distance of a vector x from the set Z, i.e.,

distðx; ZÞ ¼ inf
z2Z
kx� zk:

A function f : Rn ! R is said to be quasi-convex if for all x; y 2 Rn

and a 2 ½0;1�, the following inequality holds

f ðð1� aÞxþ ayÞ 6 maxff ðxÞ; f ðyÞg:

f is said to be upper semi-continuous (usc) on Rn if
f ðxÞ ¼ lim sup

y!x
f ðyÞ for all x 2 Rn. For each a 2 R, we denote the

(strict) sublevel sets of f by

Sf ;a ¼ fx 2 Rn : f ðxÞ < ag; Sf ðxÞ ¼ Sf ;f ðxÞ;

Sf ;a ¼ fx 2 Rn : f ðxÞ 6 ag; Sf ðxÞ ¼ Sf ;f ðxÞ:

It is well-known that f is quasi-convex if and only if Sf ;aðSf ;aÞ is con-
vex for all a 2 R, and that f is usc on Rn if and only if Sf ;a is open for
all a 2 R.

2.2. Quasi-subdifferential theory

There are many different types of subdifferential, such as
Clarke–Rockafellar subdifferential, Dini subdifferential, Fréchet
subdifferential (see Aussel, Corvellec, & Lassonde, 1995 and refer-
ences therein) and so on. They are the same for convex functions,
but different for nonconvex functions. Here we introduce the
Greenberg–Pierskalla subdifferential, defined by Greenberg and
Pierskalla (1973), as follows.

Definition 2.1 (see Greenberg & Pierskalla, 1973). The z-quasi-
conjugate of f is a function f �z : Rn ! R [ fþ1g, defined by

f �z ðxÞ ¼ z� infff ðyÞ : hx; yiP zg:

It is recalled in Greenberg and Pierskalla (1973, Theorem 1)
that the z-quasi-conjugate function provides a lower bound for
the corresponding convex conjugate function, and indeed, the
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