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a b s t r a c t

Four NP-hard optimization problems on graphs are studied: The vertex separator problem, the edge
separator problem, the maximum clique problem, and the maximum independent set problem. We show
that the vertex separator problem is equivalent to a continuous bilinear quadratic program. This
continuous formulation is compared to known continuous quadratic programming formulations for
the edge separator problem, the maximum clique problem, and the maximum independent set problem.
All of these formulations, when expressed as maximization problems, are shown to follow from the
convexity properties of the objective function along the edges of the feasible set. An algorithm is given
which exploits the continuous formulation of the vertex separator problem to quickly compute
approximate separators. Computational results are given.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper concerns discrete optimization problems on graphs
and their formulation as continuous quadratic programming prob-
lems. The paper initially focuses on the vertex separator problem,
but later observes that the analytical techniques developed to
handle this problem are also applicable to other optimization
problems on graphs including the edge separator, maximum
clique, and the maximum independent set problems.

Let G be a simple, undirected graph with vertices

V ¼ f1;2; . . . ;ng;

with edges E � V � V, and with nonnegative vertex weights
c1; c2; . . . ; cn, not all zero. Since the graph is undirected, ði; jÞ 2 E if
and only if ðj; iÞ 2 E, and since the graph is simple, the elements of
E are distinct and ði; iÞ R E for any i 2 V. A vertex separator of G is
a set of vertices S whose removal breaks the graph into two discon-
nected sets of vertices A and B. That is, ðA � BÞ \ E is empty. The
vertex separator problem (VSP) is to minimize the sum of the

weights of vertices in S while requiring that A and B satisfy size
constraints:

min
A;B�V

X
i2S

ci ð1:1Þ

subject to S ¼ V n ðA [ BÞ; A \ B ¼ ;; ðA � BÞ \ E ¼ ;;
‘a 6 jAj 6 ua; ‘b 6 jBj 6 ub:

Here jAj denotes the number of elements in the set A, and
‘a; ua; ‘b, and ub are given integer parameters that describe the
flexibility in the size of the sets A and B. These parameters should
be such that 0 6 ‘a 6 ua 6 n P ub P ‘b P 0. We assume that (1.1)
is feasible. If ‘a; ‘b P 1, then this implies G is not complete; that is,
for some i – j 2 V, we have ði; jÞ R E. Vertex separators have appli-
cations to VLSI chip design (Kernighan & Lin, 1970; Leiserson,
1980; Ullman, 1984), to finite element methods (Miller, Teng,
Thurston, & Vavasis, 1998), to parallel processing (Evrendilek,
2008), to the computation of fill-reducing orderings for sparse
matrix factorizations (George & Liu, 1981), and to network
security.

An alternative definition of a vertex separator is sometimes
used: S is a vertex separator with respect to A and B if every path
from A to B passes through a vertex in S. This definition is helpful,
since it generalizes to the notion of a wide separator, a separator in
which every path from A to B passes through at least two vertices
of S. While some authors give special treatment to wide separators
(see for instance Pothen, Simon, & Liou, 1990 and references
therein), it is worth noting that any method for finding vertex
separators can also be used to find wide separators by simply
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adding edges to the graph. In particular, define an edge set Ew be
letting ði; jÞ 2 Ew if and only if i and j are connected by a path of
length 1 or 2 in G. Note that if A is the adjacency matrix for G
defined by aij ¼ 1 when ði; jÞ 2 E, and aij ¼ 0 otherwise, then Ew

corresponds to the nonzero off-diagonal elements of Aþ A2.
And if E is replaced by Ew in (1.1), then ðA � BÞ \ Ew ¼ ; if and
only if every path from A to B passes through at least two vertices
in S.

The difficulty of solving the VSP and the size of the optimal
solution are strongly tied to the structure of the graph. For
instance, every tree has an optimal vertex separator consisting of
exactly one vertex. For planar graphs, Lipton and Tarjan showed
that a separator of size Oð

ffiffiffi
n
p
Þ can be found in linear time (Lipton

& Tarjan, 1979). However, for general graphs (and even planar
graphs), the VSP is NP-hard (Bui & Jones, 1992; Fukuyama, 2006).
Hence, heuristic algorithms have been developed for obtaining
approximate solutions; for example, see (Benlic & Hao, 2013;
Djidjev, 2000; Evrendilek, 2008; Feige, Hajiaghayi, & Lee, 2008;
Karypis & Kumar, 1995).

In Balas and de Souza (2005), Cavalcante and de Souza (2007)
and de Souza and Balas (2005), the authors studied the following
exact integer programming formulation of the VSP:

max
x;y2Bn

cTðxþ yÞ ð1:2Þ

subject to xþ y 6 1; xi þ yj 6 1 for every ði; jÞ 2 E;
‘a 6 1Tx 6 ua; and ‘b 6 1Ty 6 ub:

Here Bn ¼ f0;1gn is the collection of binary vectors with n compo-
nents, ci is the weight of vertex i; 1 is the vector whose entries are
all 1, and x and y are the incidence vectors for A and B respectively;
that is, xi ¼ 1 if i 2 A and xi ¼ 0 otherwise. Minimizing the weight of
the separator is equivalent to maximizing the weight cTðxþ yÞ of
the vertices outside the separator. The componentwise inequality
xþ y 6 1 is the partition constraint, which ensures that A and B
are disjoint. The condition xi þ yj 6 1 when ði; jÞ 2 E is the
separation constraint, which ensures that ðA � BÞ \ E ¼ ;. Finally,
the balance constraints ‘a 6 1Tx 6 ua and ‘b 6 1Ty 6 ub restrict
the size of the sets A and B.

In Balas and de Souza (2005) and de Souza and Balas (2005) the
authors studied the program (1.2) in the case where ‘a ¼ ‘b ¼ 1.
Valid inequalities for the integer polytope of (1.2) were obtained
and the program was solved on a variety of small (n 6 200) prob-
lem instances using a branch and cut algorithm. In Cavalcante and
de Souza (2007) an improved algorithm was presented which
made use of Lagrangian relaxation, improving the pool of cutting
planes and providing better primal bounds for the nodes in the
search tree.

In the current paper, we develop conditions under which the
VSP is equivalent to the following continuous bilinear quadratic
program for some choice of the parameter c > 0:

max
x;y2Rn

cTðxþ yÞ � cxTðAþ IÞy ð1:3Þ

subject to 0 6 x 6 1; 0 6 y 6 1; ‘a 6 1Tx 6 ua;

and ‘b 6 1Ty 6 ub:

We will show that the term �cxTðAþ IÞy in the objective function
amounts to a penalty term for enforcing the separation constraint
that there are no edges connecting A and B.

We show that (1.3) is equivalent to the VSP if the following
conditions are satisfied:

(C1) c P ci for all i.

(C2) The total weight of an optimal vertex separator is less than
or equal to

Xn

i¼1

ci

 !
� cð‘a þ ‘bÞ: ð1:4Þ

The first condition is satisfied by taking c ¼max fci : 1 6 i 6 ng. In
practice, the second condition is often easily satisfied. In the com-
mon case where ci ¼ 1 for all i and ‘a ¼ ‘b ¼ 1, the expression (1.4)
reduces to n� 2. Hence, in this case, (C2) is satisfied as long as (1.1)
is feasible, since A and B must each contain at least one vertex.

The equivalence between the VSP and (1.3) is in the following
sense: For any solution of (1.3), there is an associated, easily
constructed binary solution. Moreover, when (C1) and (C2) hold,
there exists a binary solution for which the penalty term vanishes
and the separation constraint is satisfied. For such a solution, an
optimal separator for the VSP is given by

A ¼ fi : xi ¼ 1g; B ¼ fi : yi ¼ 1g; and S ¼ fi : xi ¼ yi ¼ 0g:
ð1:5Þ

In some applications such as finite element methods, parallel
processing, and sparse matrix factorizations, it is important to
obtain an approximate solution to the VSP quickly. We show in
Section 7 how the continuous formulation may be incorporated
into a multilevel algorithm for finding approximate solutions in a
reasonable amount of CPU time. Multilevel algorithms have
recently been shown to produce fast and high quality solutions
to a variety of graph problems (Hendrickson & Leland, 1995;
Karypis & Kumar, 1995; Safro, Ron, & Brandt, 2006a, Safro, Ron, &
Brandt, 2006b). Other options for finding approximate separators
include the use of standard optimization algorithms applied to
(1.3), such as the gradient projection algorithm (see Bertsekas,
1999).

In other applications where we need to solve (1.3) exactly,
branch and bound techniques can be applied. For illustration, in
Hager, Phan, and Zhang (2013) we develop a branch and bound
algorithm for the closely related edge separator problem. The con-
tinuous formulation of the edge separator problem is the same as
(1.3), but with the additional constraint xþ y ¼ 1. In Hager et al.
(2013) we show that a branch and bound algorithm applied to
the continuous formulation of the edge separator problem is par-
ticularly effective for sparse graphs.

As noted earlier, our continuous formulation of the VSP is in
some sense an exact penalty method. In most exact penalty
methods for solving binary maximization problems, the penalty
function is chosen both to make the objective function convex,
guaranteeing an extreme point solution (Bauer, 1958), and to force
the extreme solution to be binary (Giannessi & Niccolucci, 1976;
Raghavachari, 1969). Our penalty formulation differs in these
two crucial aspects. In particular, if f is the objective function in
(1.3):

f ðx; yÞ ¼ cTðxþ yÞ � cxTðAþ IÞy;

then the Hessian is

r2f ¼ �c
0 B
B 0

� �
; B ¼ Aþ I:

If ki; 1 6 i 6 n, are the eigenvalues of B, then �cki; 1 6 i 6 n, are
the eigenvalues of the Hessian. Hence, f is neither convex nor con-
cave, and the number of positive eigenvalues of the Hessian is equal
to the number of negative eigenvalues. Nonetheless, we will show
that f is convex along the directions parallel to the edges of the
feasible set in (1.3). Consequently, the existence of an extreme point
maximizer follows from results of Tardella (1990). Furthermore, we
show that every extreme point of the constraint polyhedron in (1.3)
is binary, and if (C1) and (C2) hold, then there exists a binary
maximizer of (1.3) such that xTðAþ IÞy ¼ 0.
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