
Discrete Optimization

Scheduling a hybrid assembly-differentiation flowshop to minimize total
flow time

Fuli Xiong a,b, Keyi Xing b,⇑, Feng Wang b

a School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an, Shanxi 710055, China
b State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shanxi 710049, China

a r t i c l e i n f o

Article history:
Received 19 March 2014
Accepted 1 July 2014
Available online 9 July 2014

Keywords:
Scheduling
Hybrid assembly-differentiation flowshop
Hybrid meta-heuristics
Total flow time

a b s t r a c t

This study considers a hybrid assembly-differentiation flowshop scheduling problem (HADFSP), in which
there are three production stages, including components manufacturing, assembly, and differentiation.
All the components of a job are processed on different machines at the first stage. Subsequently, they
are assembled together on a common single machine at the second stage. At the third stage, each job
of a particular type is processed on a dedicated machine. The objective is to find a job schedule to min-
imize total flow time (TFT). At first, a mixed integer programming (MIP) model is formulated and then
some properties of the optimal solution are presented. Since the NP-hardness of the problem, two fast
heuristics (SPT-based heuristic and NEH-based heuristic) and three hybrid meta-heuristics (HGA-VNS,
HDDE-VNS and HEDA-VNS) are developed for solving medium- and large-size problems. In order to eval-
uate the performances of the proposed algorithms, a lower bound for the HADFSP with TFT criteria (HAD-
FSP-TFT) is established. The MIP model and the proposed algorithms are compared on randomly
generated problems. Computational results show the effectiveness of the MIP model and the proposed
algorithms. The computational analysis indicates that, in average, the HDDE-VNS performs better and
more robustly than the other two meta-heuristics, whereas the NEH heuristic consume little time and
could reach reasonable solutions.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a two-stage assembly flowshop, there is a finite set J of n jobs
to be processed. Each job requires m different components which
are processed on m parallel machines at the first stage. At the sec-
ond stage, a single assembly machine is used to assemble the com-
ponents which are produced at the first stage. It has widely
industrial applications such as fire engine assembly plant (Lee,
Cheng, & Lin, 1993), distributed database systems (Allahverdi &
Al-Anzi, 2006a, 2006b) and personal computer manufacturing
(Potts, Sevastjanov, Strusevich, Wassenhove, & Zwaneveld, 1995).

The two-stage assembly flowshop scheduling problem (TSAFSP)
with makespan criteria has been proved to be strongly NP-hard by
Lee et al. (1993) and Potts et al. (1995), respectively. Some recent
efforts are made to schedule jobs with different objectives in the
two stage assembly production environment. Lee et al. (1993),
Potts et al. (1995), Koulamas and Kyparisis (2001), and Allahverdi
and Al-Anzi (2006a, 2006b) considered the TSAFSP to minimize

makespan. Tozkapan, Kirca, and Chung (2003) studied the problem
with objective of minimizing the total weighted flow time.
Allahverdi and Al-Anzi (2006a, 2006b) addressed the problem to
minimize lateness. Al-Anzi and Allahverdi (2007) also studied the
TSAFSP with lateness criteria considering setup times. Mozdgir,
Fatemi Ghomi, Jolai, and Navaei (2013) discussed the problem to
optimize makespan and mean flow time simultaneously.

However, all the above research neglected the differentiation
operations, which arise from various industrial applications
(Herrmann & Lee, 1992; Riane, Artiba, & Elmaghraby, 2002;
Cheng, Lin, & Tian, 2009; Lin & Hwang, 2011; Liu, Fang, & Lin,
2012; Wang & Liu, 2013). For example, in a PC manufacturing plant,
components are assembled on a common stage station, no matter
which kind of computers is to be processed. After the assembly
stage, the computers will be transported to the differentiation stage
where different types of computers are packaged on several pack-
age machines. Another example is car manufacturing (Wang &
Liu, 2013), when a car model is finished assembly, it will be sent
to the paint shop where several parallel paint machines are
installed for painting different colors. In the aspect of differentia-
tion flowshop scheduling problem (DFSP), Herrmann and Lee
(1992) show that the DFSP is NP-hard even if there are only two

http://dx.doi.org/10.1016/j.ejor.2014.07.004
0377-2217/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: xiongfl1974@163.com (F. Xiong), kyxing@sei.xjtu.edu.cn

(K. Xing), wangf@mail.xjtu.edu.cn (F. Wang).

European Journal of Operational Research 240 (2015) 338–354

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.07.004&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2014.07.004
mailto:xiongfl1974@163.com
mailto:kyxing@sei.xjtu.edu.cn
mailto:wangf@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.ejor.2014.07.004
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

dedicated machines at stage two. Riane et al. (2002) studied the
DFSP in which there are two dedicated machines in the second
stage. Its objective is to minimize the makespan. They proved that
the problem is strongly NP-complete and presented three heuristics
and a dynamic programming algorithm. Cheng et al. (2009)
considered the DFSP to minimize the weighted sum of machine
completion times (WMT). They proved that the problem is strongly
NP-hard and gave an O(n3) polynomial time algorithm to solve the
special case where the sequences of jobs per type are fixed. Also,
they developed an approximation algorithm with a tight perfor-
mance ratio for the general case. Lin and Hwang (2011) presented
a dynamic programming algorithm for the DFSP with fixed
sequences per job type. Liu et al. (2012) proposed a branch and
bound algorithm for DFSP to minimize the makespan. Computa-
tional results show that their algorithm can substantially reduce
the computing efforts to find optimal solutions. Wang and Liu
(2013) considered the same problem with makespan criteria. They
proposed a heuristic method based on branch and bound algorithm
and given some lower bounds, upper bounds and dominance prop-
erties. Experimental results showed the effectiveness of their algo-
rithm. Although there are some research works on the DFSP as
above, the process of components manufacturing for assembly
operation is neglected. In this situation, comprehensively consider-
ing the DFSP and the TSAFSP, we address a novel three-stage
production scheduling problem which we called the hybrid assem-
bly-differentiation flowshop scheduling problem (HADFSP). At the
first stage, m different components required by a job are processed
on m different machines in parallel. When all of the components are
completed, a common single machine at the second stage assem-
bles the components together into a model. Subsequently, the
model is processed on one of several dedicated machines at the last
stage. The first two stages (stage 1 and stage 2) and the last two
stages (stage 2 and stage 3) can be regarded as a two-stage assem-
bly flowshop (TSAF) and a differentiation flowshop, respectively.
Our objective is to find an optimal or near-optimal permutation
schedule for the HADFSP to minimize the total flow time (HAD-
FSP-TFT). To the best of our knowledge, there are no published
papers for dealing with this problem.

Obviously, the HADFSP-TFT is strongly NP-hard since its special
cases (TSAFSP (Allahverdi & Al-Anzi, 2009), DFSP (Cheng et al.,
2009), and three machine flowshop scheduling problem (Pinedo,
2002) are all strongly NP-hard). It is unlikely to find a polynomial
time algorithm to obtain the optimal solution for the HADFSP-TFT.
Recently, many meta-heuristics have been developed to provide
optimal or near-optimal solutions for NP-hard problems in a rea-
sonable execution time. The meta-heuristics include simulated
annealing algorithm (SA, Eglese, 1990), genetic algorithm (GA,
Holland, 1975), differential evolution (DE, (Storn & Price, 1997)),
estimation of distribution algorithm (EDA, Muhlenbein & Paass,
1996), ant colony optimization (ACO, Dorigo & Gambardella,
1997), iterated greedy algorithm (IGA, Ruiz & Stutzle, 2007,
2008), variable neighborhood search (VNS, Mladenovic & Hansen,
1997) and tabu search (TS, Glover, 1996), etc. As an NP-hard prob-
lem, it is difficult to know the optimal solution of HADFSP-TFT and
hence, to verify the effectiveness and preference of a meta-
heuristic algorithm against others meta-heuristics if there are no
other meta-heuristics for comparison. Since a skilled combination
of different meta-heuristics can improve the performances of many
combinatorial problems (Allahverdi & Aydilek, 2014; Chen, Pan, &
Lin, 2008; Figielska, 2014; Li, Ong, & Nee, 2004; Murata, Ishibuchi,
& Tanaka, 1996; Naderi & Ruiz, 2014; Tseng & Lin, 2009; Wang,
Wang, Xu, Zhou, & Liu, 2012), we proposed three hybrid meta-
heuristics (HGA-VNS, HEDA-VNS and HDDE-VNS) and compared
them with each other for this novel scheduling problem.

The remainder of this paper is organized as follows. Section 2
describes and formulates the HADFSP-TFT under consideration.

Subsequently, some properties of the optimal solutions are given.
Two constructive heuristics (a SPT-based heuristic and a NEH-
based heuristic), three hybrid meta-heuristics (HGA-VNS, HEDA-
VNS and HDDE-VNS) and a lower bound for the problem are pre-
sented in Section 3. Section 4 shows computational results for
the problem. Section 5 concludes the paper and gives suggestions
for future research.

2. Problem definition and formulation

The problem studied here can be defined as follows. There are n
jobs to be processed. They can be divided into g disjoint sets of
jobs N1 ¼ fJ1; J2; . . . ; Jn1

g;N2 ¼ fJn1þ1; Jn1þ2; . . . ; Jn1þn2
g; . . ., and Ng ¼

fJn1þn2þ���þng�1þ1; Jn1þn2þ���þng�1þ2; . . . ; Jn1þn2þ���þng�1þng
g. Each set consists

of a specific type of jobs and Nh contains nh type h jobs. Let N = N1

[N2 [� � � [Ng be the set of all jobs. All jobs must be processed in
three stages. Each job Jj has m components to be processed on m
different machines in parallel at the first stage. When all of these
m components are completed, they are assembled into Job Jj on
the same machine at the second stage. At the third stage, there
are g dedicated machines M3,1, M3,2, . . . , M3,g. If a job Jj belongs to
type h, then it will be processed on machine M3,h.

In this paper, we only discuss permutation schedules. That is,
job components are to be processed on each machine at the first
stage in the same order. Under the same order, jobs are assembled
at the second stage while the job sequence on the dedicated
machine at the third stage can be determined by the first-come,
first-served (FCFS) rule.

Several assumptions are done as follows.

� All machines are available at time zero.
� Each machine can process at most one job at a time.
� Each job can be processed on at most one machine at a time.
� Setup times and transportation times are neglected.
� The processing time on both machines in three stages are

known constants.
� Job processing cannot be preempted before it is finished.
� There are unlimited buffers between the machines of the stage

one and two and the stage two and three.

Fig. 1 shows a simple HADFSP example with m = 3 and g = 2. At
the first stage, three different components required by a job are
processed on M1,1, M1,2, and M1,3, respectively. At the second stage,
all of three components are assembled into a job on the assembly
machine. At the last stage, there are two dedicated machines M3,1

and M3,2, each of which processes a special type job.
Suppose that there are n = 4 jobs J1, J2, J3, and J4 to be processed.

Jobs J1 and J2 belong to type 1 whereas Jobs J3 and J4 belong to type
2. Table 1 lists the processing time of jobs in all three stages. For a
given a permutation schedule S = (J1, J4, J2, J3), its Gantt chart is
shown in Fig. 2.

M1,1

M1,2

M1,3

M2

Stage 1
(Fabrication)

Stage 2
(Assembly)

Raw
material

Raw
material

Raw
material

Product

M3,1

M3,2

Stage 3
(Differentiation)

Fig. 1. An example of the HADFSP (m = 3, g = 2).

F. Xiong et al. / European Journal of Operational Research 240 (2015) 338–354 339

Download English Version:

https://daneshyari.com/en/article/479744

Download Persian Version:

https://daneshyari.com/article/479744

Daneshyari.com

https://daneshyari.com/en/article/479744
https://daneshyari.com/article/479744
https://daneshyari.com

