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a b s t r a c t

We investigate two scheduling problems. The first is scheduling with agreements (SWA) that consists in
scheduling a set of jobs non-preemptively on identical machines in a minimum time, subject to con-
straints that only some specific jobs can be scheduled concurrently. These constraints are represented
by an agreement graph. We extend the NP-hardness of SWA with three distinct values of processing
times to only two values and this definitely closes the complexity status of SWA on two machines with
two fixed processing times. The second problem is the so-called resource-constrained scheduling. We
prove that SWA is polynomially equivalent to a special case of the resource-constrained scheduling
and deduce new complexity results of the latter.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, two scheduling problems are addressed. The first
is scheduling with agreements (Bendraouche & Boudhar, 2012),
SWA in short, whose input consists of a set V ¼ fJ1; J2; . . . ; Jng of n
jobs where each job Ji ði ¼ 1; . . . ;nÞ has a processing time pi and
a release date ri. These jobs must be scheduled on a set of m iden-
tical machines. We assume that there is a graph G ¼ ðV ; EÞ over the
jobs, called the agreement graph. Each edge in E models a pair of
agreeing jobs that can be scheduled concurrently on different
machines. The agreement constraints are such that only agreeing
jobs can be scheduled concurrently. A schedule is an assignment
of jobs to the machines which specifies for each job the time
interval and the machine on which this job is to be processed. A
feasible schedule is a non-preemptive one which respects the
agreement constraints. The aim is to find a feasible schedule that
minimizes the makespan. Motivations and applications of this
problem can be found in Bendraouche and Boudhar (2012), Baker
and Coffman (1996), Halldorsson et al. (2003), Bodlaender and
Jansen (1995), Gardi (2009) and Even, Halldorson, Kaplan, and
Ron (2009).

To be in concordance with the scheduling notation, the SWA
problem is also denoted PjAgreeG ¼ ðV ; EÞ; . . . jCmax.

The second problem is (discrete) resource-constrained schedul-
ing defined by a set J ¼ fJ1; . . . ; Jng of n jobs, having processing
times p1; . . . ; pn and release dates r1; . . . ; rn respectively. All jobs
must be scheduled non-preemptively on m identical machines.
Besides the machines, we suppose there are s types of additional
renewable resources R1;R2; . . . ;Rs, which are available in
u1;u2; . . . ;us units respectively. Each job requires for its processing
specific amounts of resources. Thus, each job Ji ði ¼ 1; . . . ;nÞ
is characterized by (1) the resource requirement vector
RðJiÞ ¼ ½R1ðJiÞ; . . . ;RsðJiÞ� where 0 6 RkðJiÞ 6 uk ðk ¼ 1; . . . ; sÞ repre-
sents the number of units of resource Rk required for the process-
ing of the job Ji, and (2) the processing time pi and its release date
ri. Moreover, we assume that all required resources are granted to
a job before its processing begins and they are returned by the job
after its completion. In the literature this problem is denoted by
PjreskdqjCmax where reskdq describes the additional resources as
introduced in Blazewicz, Lenstra, and Rinnooy Kan (1983). The
entry k 2 f�; sg indicates the number of different resources,
d 2 f�; og specifies the resources availabilities and q 2 f�; rg indi-
cates the resource requirements. If k ¼ s; d ¼ o;q ¼ r this means
that the number of resources is bounded by s, the resource avail-
abilities is bounded by o and the resource requirements is bounded
by r respectively. If an entry equals ‘‘�’’, the corresponding amount
is specified by the input.

Another related problem worth to be cited is the so-called mul-
tiprocessor jobs scheduling with model ‘‘fix’’. In this problem n jobs
are to be processed on m dedicated processors M1;M2; . . . ;Mm.
Each job Ji requires during its processing time period pi a subset
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li # fM1;M2; . . . ;Mmg of processors simultaneously. Following the
notation of Blazewicz, Ecker, Pesch, Schmidt, and Weglarz (2001),
this problem is denoted PjfixjjCmax. This multiprocessor jobs sched-
uling can be seen as a special case of SWA problem with agreement
graph G ¼ ðV ; EÞ such that V is the set formed by the n jobs and that
ðJi; JjÞ 2 E() li \ lj ¼ /. Furthermore, the number of machines in
the SWA problem must be sufficiently large e.g. minfm;ng.

The remainder of this paper is organized as follows. Section 2
describes the literature review. Section 3, presents new complexity
results for the SWA problem in the case of two machines with at
most two distinct values of processing times. In Section 4, the
polynomial equivalence between SWA and resource-constrained
problem is proved from which new complexity results of the latter
are derived. Concluding remarks constitute Section 5.

2. Literature review

The SWA problem with two machines and arbitrary processing
times is NP-hard even if the agreement graph is complete (Garey &
Johnson, 1979).

In the case of unit processing times, the SWA problem is equiv-
alent to finding a partition of a given graph into a minimum num-
ber of cliques, each with size at most m. This problem is equivalent
to the Mutual Exclusion Scheduling problem introduced by Baker
and Coffman (1996). The SWA problem with two machines and
unit processing times is polynomial since a maximum matching
in the agreement graph yields an optimal schedule (see Baker &
Coffman, 1996).

Even et al. (2009) have considered the SWA problem under the
name Scheduling With Conflicts (SWC in short), by considering the
complement of the agreement graph called the conflict graph.
Thus, these two problems are equivalent.

Table 1 summarizes the other recent complexity results of the
SWA problem where AgreeG ¼ ðV ; EÞ and AgreeG ¼ ðS1; S2; EÞ denote
an arbitrary agreement graph and arbitrary bipartite agreement
graph respectively.

Resource-constrained scheduling problems are largely consid-
ered in the literature. An overview and complexity classification
of scheduling problems with additional renewable resources can
be found in Blazewicz et al. (1983). Table 2 summarizes all the
recent complexity results concerning this problem. Whereas,
Table 3 reports some of the recent complexity results concerning
multiprocessor scheduling with model ‘‘fix’’.

3. Scheduling With Agreements (SWA) on two machines with
two distinct processing times

In Bendraouche and Boudhar (2012), the authors proved that
the SWA problem with two machines and pi 2 f1;2;3g is strongly
NP-hard even for arbitrary bipartite agreement graphs. In this sec-
tion, we show that this result remains true even with two distinct
values of processing times, and this will definitely close the com-
plexity status for the SWA problem in the case of two machines.

We shall denote the general problem, with two distinct processing
times by P2jAgreeG ¼ ðV ; EÞ; pi 2 fa;2aþ bgjCmax. In the rest of this
paper, we assume that a P 1 and 2aþ b > a, which is equivalent to
b > �a and will consider all cases: b ¼ 0; b P 1 and �a < b < 0.
When b ¼ 0, this corresponds to pi 2 fa;2ag. In Even et al. (2009),
the authors proved that the problem with pi 2 f1;2g is polynomial
by using the maximum matching technique. By the same argument
one can easily verify that this result is also true when pi 2 fa;2ag,
and this simply can be done by replacing the length of unit jobs by
a. Thus, in the following we shall concentrate on the other two
cases: b P 1 and �a < b < 0.

3.1. Case pi 2 fa; 2aþ bg and b P 1

In the next result, we prove that for two machines,
pi 2 fa;2aþ bg and b P 1 the SWA problem is strongly NP-hard
even for arbitrary bipartite agreement graphs. The candidate used
in the reduction process is the 3-Dimensional Matching Problem
(3-DM), which is known to be NP-complete (see for e.g. Garey &
Johnson, 1979). This problem is defined as follows.

Instance: a set M # X � Y � Z where X;Y and Z are mutually dis-
joint sets having the same cardinality q.

Question: does M contain a subset M0 # M such that jM0 j ¼ q and
no two elements of M0 agree in any coordinate?

Theorem 1. The SWA problem P2jAgreeG ¼ ðS1; S2; EÞ; pi 2
fa;2aþ bgjCmax is NP-hard in the strong sense for any two distinct
values a and 2aþ b with b P 1.

Proof. The proof will be divided into three parts depending on the
values of b, namely b < a; b > a and b ¼ a.

Case 1: b < a.
We use a reduction similar to that in Bendraouche and Boudhar

(2012) with the following changes. Given an arbitrary instance of
3-DM, we construct the corresponding scheduling instance as
follows. Let us construct the agreement graph G ¼ ðV ; EÞ.

Table 1
Previous complexity results of the SWA problem.

Problem Complexity Reference

P2jAgreeG ¼ ðV ; EÞ, Poly. Even et al. (2009)
pi 2 f1;2gjCmax

P2jAgreeG ¼ ðS1; S2; EÞ, Strongly Bendraouche and Boudhar (2012)
pi 2 f1;2;3gjCmax NP-hard
P2jAgreeG ¼ ðS1; S2; EÞ, Strongly Bendraouche and Boudhar (2012)
ri 2 f0; rg;pi 2 f1;2gjCmax NP-hard
P2jAgreeG ¼ ðS1; S2; EÞ, Poly. Bendraouche and Boudhar (2012)
pS1
¼ 1jCmax

Table 2
Previous complexity results of the resource-constrained scheduling.

Problem Complexity Reference

P2jres1 � �; pi ¼ 1jCmax OðnlognÞ Blazewicz et al. (2001)
P2jres1 � �; ri; pi ¼ 1jCmax sNP-hard Blazewicz et al. (1986)
P2jres � ��; pi ¼ 1jCmax Oðn2:5Þ Garey and Johnson (1975)
P2jres � 11; ri; pi ¼ 1jCmax sNP-hard Blazewicz et al. (1986)
P3jres1 � �; pi ¼ 1jCmax sNP-hard Garey and Johnson (1975)
P3jres � 11; ri; pi ¼ 1jCmax sNP-hard Blazewicz et al. (1983)
Pjres1 � 1; ri; pi ¼ 1jCmax OðnÞ Blazewicz (1978)
Pjresspr; pi ¼ 1jCmax OðnÞ Blazewicz and Ecker (1983)

Table 3
Some previous results of multiprocessor jobs model ‘‘fix’’ scheduling.

Problem Complexity Reference

PjfixjjCmax 20 NP-h cases Coffman et al. (1985)

and jfixjj ¼ 2 23 poly. cases

PjfixjjCmax 9 NP-h cases Kubale (1987)

and jfixjj 2 f1;2g 9 poly. cases

Pjfixj; pj ¼ 1jCmax sNP-hard Krawczyk and Kubale (1985)

P3jfixjjCmax sNP-hard Blazewicz et al. (1994)
Hoogeveen and Van de Velde (1994)

P2jfixj; pj ¼ 1jCmax OðnÞ Bianco et al. (1994)

P3jfixj; pj ¼ 1jCmax

P4jfixj; pj ¼ 1jCmax

P5jfixj; pj ¼ 1jCmax Oðn2:5Þ Bianco et al. (1994)

Pjfixj; pj ¼ 1jCmax sNP-hard Hoogeveen and Van de Velde (1994)
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