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a b s t r a c t

The classical objective function of the Vehicle Routing Problem (VRP) is to minimize the total distance
traveled by all vehicles (Min–Sum). In several situations, such as disaster relief efforts, computer
networks, and workload balance, the minimization of the longest route (Min–Max) is a better objective
function. In this paper, we compare the optimal solution of several variants of the Min–Sum and the
Min–Max VRP, from the worst-case point of view. Our aim is two-fold. First, we seek to motivate the
design of heuristic, metaheuristic, and matheuristic algorithms for the Min–Max VRP, as even the optimal
solution of the classical Min–Sum VRP can be very poor if used to solve the Min–Max VRP. Second, we aim
to show that the Min–Max approach should be adopted only when it is well-justified, because the
corresponding total distance can be very large with respect to the one obtained by optimally solving
the classical Min–Sum VRP.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Vehicle Routing Problem (VRP) is the problem of determining
a set of routes that visit a set of customers at minimum distance,
where each route satisfies a capacity constraint. This problem is
interesting both from the theoretical and the practical points of
view. In fact, finding an optimal solution is really challenging and
this problem is solved daily by companies worldwide. In the last
50 years, numerous variants have been studied, including the case
with one vehicle (Traveling Salesman Problem – TSP), the case with
multiple uncapacitated vehicles (Multiple TSP – MTSP), and the
more traditional case with several capacitated vehicles (Capaci-
tated VRP – CVRP). The latter case, which was introduced in
Dantzig and Ramser (1959), plays a central role in distribution
management. The first exact algorithms for the CVRP were pro-
posed by Christofides, Mingozzi, and Toth (1981a, 1981b). The best
known exact algorithms are the ones proposed by Fukasawa et al.
(2006) and Baldacci, Christofides, and Mingozzi (2008), Baldacci,
Mingozzi, and Roberti (2011). For a recent survey on exact
algorithms for the CVRP, we refer the reader to Baldacci,
Mingozzi, and Roberti (2012). Although it is possible to optimally
solve instances of the TSP with several thousands of customers,
the CVRP remains very difficult to solve optimally, even if a few
hundred customers are considered. Therefore, both heuristic and

metaheuristic algorithms have been proposed for its solution.
The most famous heuristic is the Savings algorithm by Clarke and
Wright (1964). The best known metaheuristics are the Adaptive
large neighborhood search by Pisinger and Ropke (2007) and the
Hybrid genetic algorithm recently proposed by Vidal, Crainic,
Gendreau, and Prins (2014). We refer to Toth and Vigo (2002)
and Golden, Raghavan, and Wasil (2008) for two comprehensive
books on the VRP and to Laporte, Toth, and Vigo (2013) for a recent
overview of exact, heuristic, and metaheuristic approaches.

The classical objective function of the VRP is the minimization
of the total distance traveled by all vehicles (Min–Sum). In this
paper, we also focus on the case in which the aim is to minimize
the longest route (Min–Max). This new objective function is impor-
tant in several situations. For example, in disaster relief efforts the
aim is to serve all victims as soon as possible, in computer
networks the aim is to minimize the maximum latency between
a server and a client, in workload balance the aim is to balance
the amount of work among drivers on a given day or across a time
horizon. A limited number of papers is devoted to the Min–Max
VRP. A tabu search algorithm is proposed in França, Gendreau,
Laporte, and Müller (1995) for the Multiple TSP. Averbakh and
Berman (1996) study the problem in which two salesmen must
visit nodes on a tree. Applegate, Cook, Dash, and Rohe (2002)
develop specialized cutting planes and a distributed search algo-
rithm to solve the so-called Newspaper routing problem. Carlsson,
Ge, Subramaniam, and Ye (2009) study the multi-depot case and
propose an LP-based balancing approach and a region partition
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heuristic. Wang, Golden, and Wasil (2013) develop a three-phase
heuristic able to significantly improve upon the LP-based balancing
approach. Ren (2011) proposes a hybrid genetic algorithm. Yakici
and Karasakal (2013) propose a heuristic approach for the case
with split deliveries and heterogeneous demands. Campbell,
Vandenbussche, and Hermann (2008) propose for the first time a
comparison of the solutions obtained with alternative objective
functions. They define Min–Max and Min–Sum in a different
way: Min–Max aims at minimizing the arrival time to the latest
customer and Min–Avg (or Min–Sum) aims at minimizing the
average arrival time or, equivalently, the sum of the arrival times
to the customers. The paper by Huang, Smilowitz, and Balcik
(2012) extends this work by studying how alternative objectives,
based on equity, efficiency, and efficacy metrics, influence the
structure of the routes. The solutions obtained on the basis of the
definitions of Min–Max and Min–Sum used in Campbell et al.
(2008) can be very different from the ones obtained on the basis
of our definition of Min–Max and Min–Sum. Consider for example
the simpler TSP case. Our Min–Sum and Min–Max objectives are
equivalent, while if the aim is to minimize the latest arrival, the
routing can significantly differ. In fact, Campbell et al. (2008) show
that the worst-case ratio between the total length of the route
obtained by minimizing the latest arrival and the total length of
the route obtained by minimizing the total length is 3/2.

The length of the longest route in the Min–Sum VRP is not lower
than the length of the longest route in the Min–Max VRP, while the
total distance in the Min–Max VRP is not lower than the total dis-
tance in the Min–Sum VRP. Our aim is to consider several variants
of the VRP. For each of these variants, we aim to answer the follow-
ing questions:

1. What is the ratio of the length of the longest route in the Min–
Sum VRP to the length of the longest route in the Min–Max VRP,
in the worst case?

2. What is the ratio of the total distance of the Min–Max VRP to
the total distance of the Min–Sum VRP, in the worst case?

The answer to the first question tells us if minimizing the total
distance can imply a significant increase in the length of the longest
route. In that case, the design of heuristic, metaheuristic, and math-
euristic algorithms for the Min–Max VRP is well-motivated. The
answer to the second question tells us if minimizing the longest
route can imply a significant increase in the total distance. In that
case, this objective should be really well-justified to be adopted.

The remainder of the paper is organized as follows. In Section 2,
the variants of the VRP studied in the paper are formally described.
In Section 3, the worst-case analysis concerning the Capacitated
VRP with an infinite number of vehicles is shown. Section 4 focuses
on the Capacitated VRP with a finite number of vehicles. Section 5
concerns the Multiple TSP. Section 6 focuses on the Service time
VRP with a finite number of vehicles. Some conclusions are pre-
sented in Section 7.

2. Description of problems

Let GðV ; EÞ be a complete graph, where V ¼ f0;1; . . . ; ng is the
set of vertices and E is the corresponding set of edges. Vertex 0 cor-
responds to the depot, while vertices 1;2; . . . ;n correspond to the
customers. Each customer has to be served in full by one route
(i.e., splitting of the demand is not allowed). Let cij be the distance
corresponding to the edge ði; jÞ 2 E. We consider the following four
variants of the VRP:

1. Capacitated VRP with an infinite number of vehicles: Each cus-
tomer i ¼ 1;2; . . . ;n has a demand di > 0 not greater than the
vehicle capacity C. An infinite fleet of vehicles is available.

2. Capacitated VRP with a finite number of vehicles: Each customer
i ¼ 1;2; . . . ;n has a demand di > 0 not greater than the vehicle
capacity C. At most k vehicles are available.

3. Multiple TSP: The customers just have to be visited (i.e., no
demand has to be satisfied). Each vehicle has infinite capacity.
Exactly k routes have to be determined.

4. Service time VRP with a finite number of vehicles: Distances are
replaced by travel times. Customer demands are given in terms
of service times. The duration of any route is the sum of travel
time and service times of the customers visited by the route. At
most k vehicles are available and there is no limit on the total
load or duration of a route.

In the Min–Sum VRP, the problem is to determine a set of routes
that minimizes the total distance (or total time). Instead, in the
Min–Max VRP, the problem is to determine a set of routes that
minimizes the length (or duration) of the longest route.

3. Capacitated VRP with an infinite number of vehicles

In the Capacitated VRP with an infinite number of vehicles, each
customer i ¼ 1;2; . . . ;n has a demand di > 0 not greater than the
vehicle capacity C. An infinite fleet of vehicles is available.

Let us denote by r1MM the length of the longest route in the opti-
mal solution of the Min–Max Capacitated VRP with an infinite
number of vehicles and by r1MS the length of the longest route in
the optimal solution of the Min–Sum Capacitated VRP with an infi-
nite number of vehicles.

Theorem 1. There exists an instance class with parameter � such that
r1MS
r1MM
!1 for �!1.

Proof. Let 0 6 � < 1 be a real number such that 1
� is an integer.

Consider the following instance class with parameter �:

Example 1.

� Single depot called node 0.
� Number of customers: n ¼ 1þ 1

� (nodes 1;2; . . . ;1þ 1
�).

� Vehicle capacity: C ¼ 1
�.

� Demand of customer 1: d1 ¼ 1
�.

� Demand of customers i ¼ 2;3; . . . ;n : di ¼ �.
� Depot to customer distances: c0i ¼ 1, for i ¼ 1;2; . . . ; n.
� Customer to customer distances: cij ¼ 1� � for i; j ¼ 1;2; . . . ;n;

i – j.

The corresponding optimal solutions are shown in Fig. 1(a)
and (b).

An optimal solution of the Min–Sum Capacitated VRP with an
infinite number of vehicles is the following: Serve customer 1
directly and all the remaining customers 2;3; . . . ;n in the same
route. In fact, since d1 ¼ C and splitting of the demand is
not allowed, customer 1 has to be served directly. Moreover,
the length of the route serving customers 2;3; . . . ;n is
1þ ð1� �Þð1� � 1Þ þ 1 ¼ 1

� þ �. This length cannot be reduced by

using more routes to serve these customers. In fact, let 2 6 R 6 1
� (R

integer) be the number of routes to serve these customers. The
corresponding length is 2Rþ ð1� �Þð1� � RÞ, which is greater than
1
� þ � for R P 2. Therefore, the length of the longest route is

r1MS ¼ 1
� þ �.

An optimal solution of the Min–Max Capacitated VRP with an
infinite number of vehicles is the following: Serve each customer
1;2; . . . ;n directly. In fact, since customer 1 has to be served
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